Skip to main content
Log in

The effect of elevation, latitude, and plant richness on robustness of pollination networks at a global scale

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Plant-pollinator interactions play a vital role in the maintenance of biodiversity and ecosystem function. Geographical variation in environmental factors can influence the diversity of pollinators and thus, affect the structure of pollination networks. Given the current global climate change, understanding the variation of pollination network structure along environmental gradients is vital to predict how global change will affect the ecological interaction processes. Here, we used a global plant-pollinator interaction data collection by the same sampling method at the same period to explore the effects of elevation, latitude, and plant richness on the structure and robustness of pollination networks. We analyzed a total of 87 networks of plant-pollinator interactions on 47 sites from 14 countries. We conducted a piecewise structural equation model to examine the direct and indirect effects of elevation, latitude, and plant richness on the network robustness and analyzed the function of network structure in elucidating the relationship between robustness and these gradients. We found that plant richness had both positive effects on robustness under random and specialist-first scenarios. Elevation, latitude, and plant richness affected network connectance and modularity, and ultimately affected network robustness which were mediated by nestedness under specialist-first and random scenarios, and by connectance under the generalist-first scenario. This study reveals the indirect effects of elevation, latitude, and plant richness on pollination network robustness were mediated by nestedness or connectance depended on the order of species extinctions, implying that communities with different pollination network structures can resist different extinction scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Adedoja OA, Kehinde T, Samways MJ (2018) Insect-flower interaction networks vary among endemic pollinator taxa over an elevation gradient. PLoS ONE 13:e0207453

    Article  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    Article  CAS  PubMed  Google Scholar 

  • Biella P, Akter A, Ollerton J, Nielsen A, Klecka J (2020) An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks. Funct Ecol 34:2246–2258

    Article  Google Scholar 

  • Biesmeijer JC, Slaa EJ, Castro MSD, Viana BF, Kleinert ADM, Imperatriz-Fonseca VL (2005) Connectance of Brazilian social bee: food plant networks is influenced by habitat, but not by latitude, altitude or network size. Biota Neotrop 5:85–93

    Article  Google Scholar 

  • Blüthgen N, Klein AM (2011) Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl Ecol 12:282–291

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:1–12

    Article  Google Scholar 

  • Brimacombe C, Bodner K, Michalska-Smith M, Gravel D, Fortin MJ (2022) No strong evidence that modularity, specialization or nestedness are linked to seasonal climatic variability in bipartite networks. Glob Ecol Biogeogr 31:2510–2523

    Article  Google Scholar 

  • Burkle LA, Alarcón R (2011) The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am J Bot 98:528–538

    Article  PubMed  Google Scholar 

  • Cagnolo L, Valladares G, Salvo A, Cabido M, Zak M (2009) Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits. Conserv Biol 23:1167–1175

    Article  PubMed  Google Scholar 

  • Chatelain P, Plant A, Soulier-Perkins A, Daugeron C (2018) Diversity increases with elevation: empidine dance flies (Diptera, Empididae) challenge a predominant pattern. Biotropica 50:633–640

    Article  Google Scholar 

  • Chesshire PR, McCabe LM, Cobb NS (2021) Variation in plant-pollinator network structure along the elevational gradient of the San Francisco Peaks. Arizona Insects 12:1060

    Article  PubMed  Google Scholar 

  • Classen A, Eardley CD, Hemp A, Peters MK, Peters RS, Ssymank A, Steffan-Dewenter I (2020) Specialization of plant-pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol Evol 10:2182–2195

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortina CA, Neff JL, Jha S (2023) Historic and contemporary land use shape plant-pollinator networks and community composition. Conserv Invertebr Agric Landscapes 16648714.

  • Dalsgaard BO, Magård E, Fjeldså J et al (2011) Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLoS ONE 6:e25891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devoto M, Medan D, Montaldo NH (2005) Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109:461–472

    Article  Google Scholar 

  • Doré M, Fontaine C, Thébault E (2021) Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Glob Change Biol 27:1266–1280

    Article  Google Scholar 

  • Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269

    Article  Google Scholar 

  • Elberling H, Olesen J (1999) The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography 22:314–323

    Article  Google Scholar 

  • Escobedo-Kenefic N, Landaverde-González P, Theodorou P, Cardona E, Dardón MJ, Martínez O, Domínguez CA (2020) Disentangling the effects of local resources, landscape heterogeneity and climatic seasonality on bee diversity and plant-pollinator networks in tropical highlands. Oecologia 194:333–344

    Article  PubMed  Google Scholar 

  • Fortuna MA, Stouffer DB, Olesen JM et al (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 79:811–817

    Article  PubMed  Google Scholar 

  • Fründ J, Dormann CF, Holzschuh A, Tscharntke T (2013) Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94:2042–2054

    Article  PubMed  Google Scholar 

  • Fründ J, Linsenmair KE, Blüthgen N (2010) Pollinator diversity and specialization in relation to flower diversity. Oikos 119:1581–1590

    Article  Google Scholar 

  • Gilarranz LJ, Rayfield B, Liñán-Cembrano G, Bascompte J, Gonzalez A (2017) Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357:199–201

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Martínez C, González-Estévez MA, Cursach J, Lazaro A (2022) Pollinator richness, pollination networks, and diet adjustment along local and landscape gradients of resource diversity. Ecol Appl 32:e2634

    Article  PubMed  PubMed Central  Google Scholar 

  • Grass I, Jauker B, Steffan-Dewenter I, Tscharntke T, Jauker F (2018) Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat Ecol Evol 2:1408–1417

    Article  PubMed  Google Scholar 

  • Hoiss B, Krauss J, Steffan-Dewenter I (2015) Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks. Glob Change Biol 21:4086–4097

    Article  Google Scholar 

  • Hurlbert AH, Stegen JC (2014) When should species richness be energy limited, and how would we know? Ecol Lett 17:401–413

    Article  PubMed  Google Scholar 

  • Izquierdo-Palma J, del Coro AM, Lara C, Ornelas JF (2021) Forbidden links, trait matching and modularity in plant-hummingbird networks: are specialized modules characterized by higher phenotypic floral integration? PeerJ 9:e10974

    Article  PubMed  PubMed Central  Google Scholar 

  • James A, Pitchford JW, Plank MJ (2012) Disentangling nestedness from models of ecological complexity. Nature 487:227–230

    Article  CAS  PubMed  Google Scholar 

  • Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • Kastinger C, Weber A (2001) Bee-flies (Bombylius spp., Bombyliidae, Diptera) and the pollination of flowers. Flora 196:3–25

    Article  Google Scholar 

  • Lance RF, Bailey P, Lindsay DL, Cobb NS (2017) Precipitation and the robustness of a plant and flower-visiting insect network in a xeric ecosystem. J Arid Environ 144:48–59

    Article  Google Scholar 

  • Lara-Romero C, Seguí J, Pérez-Delgado A, Nogales M, Traveset A (2019) Beta diversity and specialization in plant–pollinator networks along an elevational gradient. J Biogeogr 46:1598–1610

    Article  Google Scholar 

  • Lázaro A, Tscheulin T, Devalez J, Nakas G, Stefanaki A, Hanlidou E, Petanidou T (2016) Moderation is best: effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. Ecol Appl 26:796–807

    Article  PubMed  Google Scholar 

  • Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Lefebvre V, Villemant C, Fontaine C, Daugeron C (2018) Altitudinal, temporal and trophic partitioning of flower-visitors in Alpine communities. Sci Rep 8:1–12

    Article  Google Scholar 

  • Lever JJ, van Nes EH, Scheffer M, Bascompte J (2014) The sudden collapse of pollinator communities. Ecol Lett 17:350–359

    Article  PubMed  Google Scholar 

  • Liu H, Liu Z, Zhang M, Bascompte J, He F, Chu C (2021) Geographic variation in the robustness of pollination networks is mediated by modularity. Glob Ecol Biogeogr 30:1447–1460

    Article  Google Scholar 

  • Luna P, Villalobos F, Escobar F, Neves FS, Dáttilo W (2022) Global trends in the trophic specialisation of flower-visitor networks are explained by current and historical climate. Ecol Lett 25:113–124

    Article  PubMed  Google Scholar 

  • Martín González AM, Dalsgaard B, Nogués-Bravo D et al (2015) The macroecology of phylogenetically structured hummingbird-plant networks. Glob Ecol Biogeogr 24:1212–1224

    Article  Google Scholar 

  • McCabe LM, Colella E, Chesshire P, Smith D, Cobb NS (2019) The transition from bee-to-fly dominated communities with increasing elevation and greater forest canopy cover. PLoS ONE 14:e0217198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond Ser b: Biol Sci 271:2605–2611

    Article  Google Scholar 

  • Minachilis K, Kantsa A, Devalez J, Trigas P, Tscheulin T, Petanidou T (2020) Bumblebee diversity and pollination networks along the elevation gradient of Mount Olympus, Greece. Divers Distrib 26:1566–1581

    Article  Google Scholar 

  • Mizunaga Y, Kudo G (2017) A linkage between flowering phenology and fruit-set success of alpine plant communities with reference to the seasonality and pollination effectiveness of bees and flies. Oecologia 185:453–464

    Article  PubMed  Google Scholar 

  • Moreira EF, Boscolo D, Viana BF (2015) Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10:e0123628

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira LT, Falcão LAD, de Araújo WS (2020) Geographical patterns in the architecture of neotropical flower-visitor networks of hummingbirds and insects. Zool Stud 59.

  • Morrison BM, Brosi BJ, Dirzo R (2020) Agricultural intensification drives changes in hybrid network robustness by modifying network structure. Ecol Lett 23:359–369

    Article  PubMed  Google Scholar 

  • Neff F, Brändle M, Ambarlı D et al (2021) Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci Adv 7:eabf3985

    Article  PubMed  PubMed Central  Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 83:2416–2424

    Google Scholar 

  • Ollerton J (2021) Pollinators and pollination: nature and society. Pelagic Publishing Ltd

    Book  Google Scholar 

  • Ollerton J, Cranmer L (2002) Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised? Oikos 98:340–350

    Article  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Ollerton J, Trunschke J, Havens K et al (2022) Pollinator-flower interactions in gardens during the COVID-19 pandemic lockdown of 2020. Journal of Pollination Ecology 31:87–96

    Article  Google Scholar 

  • Orr MC, Hughes AC, Chesters D, Pickering J, Zhu CD, Ascher JS (2021) Global patterns and drivers of bee distribution. Curr Biol 31:451–458

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Canadas S, Flores-Hernández N, Sánchez-Ortiz T, Valiente-Banuet A (2021) Changes in the structure and composition of the ‘Mexical’ scrubland bee community along an elevational gradient. PLoS ONE 16:e0254072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauw A, Stanway R (2015) Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere. J Biogeogr 42:652–661

    Article  Google Scholar 

  • Pellissier L, Albouy C, Bascompte J et al (2018) Comparing species interaction networks along environmental gradients. Biol Rev 93:785–800

    Article  PubMed  Google Scholar 

  • Peters MK, Hemp A, Appelhans T et al (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun 7:1–11

    Article  Google Scholar 

  • Poisot T, Bergeron G, Cazelles K et al (2021) Global knowledge gaps in species interaction networks data. J Biogeogr 48:1552–1563

    Article  Google Scholar 

  • Prendergast KS (2022) Assessing climate change impacts on pollinators. In: Kevan P, Chan SW (eds) Promoting pollination and pollinators in farming. Burleigh Dodds Science Publishing, Cambridge

    Google Scholar 

  • Prendergast KS (2023) Native flora receive more visits than exotics from bees, especially native bees, in an urbanised biodiversity hotspot. Pac Conserv Biol. https://doi.org/10.1071/PC22033

    Article  Google Scholar 

  • Prendergast KS, Ollerton J (2022) Spatial and temporal scale of analysis alter conclusions about the effects of urbanisation on plant–pollinator networks. Arthropod-Plant Interactions 16:553–565

    Article  Google Scholar 

  • Prendergast KS, Tomlinson S, Dixon KW, Bateman PW, Menz MHM (2022) Urban native vegetation remnants support more diverse native bee communities than residential gardens in Australia’s southwest biodiversity hotspot. Biol Cons 265:109408

    Article  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Opens in new tab. https://www.R-project.org/

  • Ramos-Jiliberto R, Domínguez D, Espinoza C, Lopez G, Valdovinos FS, Bustamante RO, Medel R (2010) Topological change of Andean plant–pollinator networks along an altitudinal gradient. Ecol Complex 7:86–90

    Article  Google Scholar 

  • Rodger JG, Bennett JM, Razanajatovo M et al (2021) Widespread vulnerability of flowering plant seed production to pollinator declines. Sci Adv 7:eabd3524

    Article  PubMed  PubMed Central  Google Scholar 

  • Santamaría S, Galeano J, Pastor JM, Méndez M (2014) Robustness of alpine pollination networks: effects of network structure and consequences for endemic plants. Arct Antarct Alp Res 46:568–580

    Article  Google Scholar 

  • Schleuning M, Fründ J, Klein AM et al (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol 22:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Sebastián-González E, Dalsgaard B, Sandel B, Guimaraes PR Jr (2015) Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Glob Ecol Biogeogr 24:293–303

    Article  Google Scholar 

  • Song C, Rohr RP, Saavedra S (2017) Why are some plant–pollinator networks more nested than others? J Anim Ecol 86:1417–1424

    Article  PubMed  Google Scholar 

  • Traveset A, Tur C, Trøjelsgaard K, Heleno R, Castro-Urgal R, Olesen JM (2016) Global patterns of mainland and insular pollination networks. Glob Ecol Biogeogr 25:880–890

    Article  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biogeogr 22:149–162

    Article  Google Scholar 

  • Tylianakis JM, Morris RJ (2017) Ecological networks across environmental gradients. Annu Rev Ecol Evol Syst 48:25–48

    Article  Google Scholar 

  • Vanbergen AJ, Woodcock BA, Gray A et al (2014) Grazing alters insect visitation networks and plant mating systems. Funct Ecol 28:178–189

    Article  Google Scholar 

  • Venjakob C, Klein AM, Ebeling A, Tscharntke T, Scherber C (2016) Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions. Ecol Evol 6:2249–2261

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XP, Zeng T, Wu MS, Zhang DX (2020) Seasonal dynamic variation of pollination network is associated with the number of species in flower in an oceanic island community. J Plant Ecol 13:657–666

    Article  Google Scholar 

  • Wang XP, Zeng T, Wu MS, Zhang DX (2021) A half-day flowering pattern helps plants sharing pollinators in an oceanic island community. J Trop Ecol 37:16–25

    Article  Google Scholar 

  • Wang XP, Fu X, Shi MM, Zhao ZT, Li SJ, Tu TY (2023) Invasive Asteraceae plants can enhance community stability by changing pollination network structure, yet cause intense pollen disturbance to native plants in an oceanic island community. Biol Invasions. https://doi.org/10.1007/s10530-023-03129-w

    Article  Google Scholar 

  • Welti EAR, Joern A (2015) Structure of trophic and mutualistic networks across broad environmental gradients. Ecol Evol 5:326–334

    Article  PubMed  Google Scholar 

  • Welti E, Helzer C, Joern A (2017) Impacts of plant diversity on arthropod communities and plant-herbivore network architecture. Ecosphere 8:e01983

    Article  Google Scholar 

  • Winfree R, Williams NM, Dushoff J, Kremen C (2014) Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant-pollinator networks disassemble. Am Nat 183:600–611

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to the researchers who collected the garden plant-pollinator interaction dataset.

Funding

This research was supported by the National Natural Science Foundation of China (Grant Numbers 32271613, 32170232) and the National Key Research and Development Program of China (Grant Numbers 2021YFC3100404, 2021YFC3100405) and the South China Botanical Garden, Chinese Academy of Sciences (Grant Number QNXM-202303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Yao Tu.

Ethics declarations

Competing interest

The authors declare that there are no competing interests associated with this work.

Additional information

Handling Editor: Miriama Malcicka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1

All potential pathways effects of elevation, latitude, and plant richness on the structures (connectance, modularity, nestedness and specialization) and robustness of plant-pollinator networks in the structural equation model. We used the same color lines to represent these effects because it is uncertain whether the effects are positive or negative based on previous studies

Supplementary file1 (JPG 595 KB)

Table S1

The information, network structures metrics and robustness (under three species extinction scenarios) of 87 plant-pollinator interaction networks in this study

Supplementary file2 (XLSX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XP., Ollerton, J., Prendergast, K.S. et al. The effect of elevation, latitude, and plant richness on robustness of pollination networks at a global scale. Arthropod-Plant Interactions (2024). https://doi.org/10.1007/s11829-024-10056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11829-024-10056-7

Keywords

Navigation