Skip to main content
Log in

Parasitism on seed predators overcomes the detrimental effects of defoliation on plant fitness in a tritrophic system

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

It is widely recognised that the interaction between plants and herbivores cannot be completely understood if the natural enemies of the latter are not included. Most studies looking at the effects of herbivores and their enemies on plant fitness only consider one herbivore species or guild; however, plants in nature usually face the attack of more than one herbivore guild simultaneously and these herbivores may have a non-additive effect on the attraction with bodyguards and plant fitness. In this study, we asked whether folivory affects the activity of parasitoids on seed predators and whether this effect cascades down to plant fitness. We assessed these questions in a tritrophic system: the plant Ruellia nudiflora, its pre-dispersal seed predators and the parasitoids of the latter. Plants were submitted to either 50 % artificial defoliation or no defoliation (control). The number of seeds, fruit production and parasitoid incidence was assessed periodically in both sets of plants. Parasitoids indirectly and positively affected seed number, while defoliation had a direct negative effect on the number of seeds and an indirect negative effect on parasitoid incidence. However, the combined effect of defoliation and seed predation increased the indirect positive effect of the parasitoids on seed production, which overcame the negative effects of defoliation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala-Roberts L, Mooney K (2013) Environmental and plant genetic effects on tri-trophic interactions. Oikos 122:1157–1166

    Article  Google Scholar 

  • Abdala-Roberts L, Parra-Tabla V, Salinas-Peba L, Díaz-Castelazo C (2010) Spatial variation in the strength of a trophic cascade involving Ruellia nudiflora (Acanthaceae), an insect seed predator and associated parasitoid fauna in Mexico. Biotropica 42:180–187

    Article  Google Scholar 

  • Abogba BC, Powell W (2007) Effects of the presence of a nonhost herbivore on the response of the aphid parasitoid Diaretiella rapae to host-infested cabbage plant. J Chem Ecol 33:2229–2235

    Article  CAS  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: Part I. Nature 280:361–367

    Article  CAS  PubMed  Google Scholar 

  • Blue E, Kay J, Younginger BS, Ballhorn DJ (2014) Differential effects of type and quantity of leaf damage on growth, reproduction and defense of lima bean (Phaseolus lunatus L.). Plant Biol 17:712–719

    Article  PubMed  Google Scholar 

  • Cardoza YJ, Alborn HT, Tumlinson JH (2002) In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. J Chem Ecol 28:161–174

    Article  CAS  PubMed  Google Scholar 

  • Cervera JC, Parra-Tabla V (2009) Seed germination and seedling survival traits of invasive and non-invasive congeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Plant Ecol 205:285–293

    Article  Google Scholar 

  • Chattopadhayay J, Sarkar R, Fritzsche-hoballah ME, Turlings TCJ, Bersier LF (2001) Parasitoids may determine plant fitness: a mathematical model based on experimental data. J Theor Biol 212:295–302

    Article  CAS  PubMed  Google Scholar 

  • Chen M-S (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15:101–114

    Article  CAS  Google Scholar 

  • Crawley MJ (1992) Seed predators and plant population dynamics. In: Fenner M (ed) Seeds: The ecology of regeneration in plant communities. CAB International, Wallingford, pp 157–191

    Google Scholar 

  • Crawley MJ (2013) R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Cuautle M, Parra-Tabla V (2014) Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales. Acta Oecol 55:8–14

    Article  Google Scholar 

  • Culley TM, Klooster MR (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in Angiosperms. Bot Rev 73:1–30

    Article  Google Scholar 

  • De Boer JG, Hordijk CA, Posthumus MA, Dicke M (2008) Prey and nonprey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J Chem Ecol 34:281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Meeûs T, Renaud F (2002) Parasitism within the new phylogeny of eukaryotes. Trends Parasitol 18:247–251

    Article  PubMed  Google Scholar 

  • Fhara-Rheman F, Khan FA, Anis SB, Badruddin MA (2009) Plant defense against insect herbivory. In: Ciancio A, Mukerji KG (eds) Integrate management of arthropod and borne diseases, 5th edn. Springer, Dordrecht, pp 189–208

    Google Scholar 

  • Fornoni J (2011) Ecological and evolutionary implications of plant tolerance to herbivory. Funct Ecol 25:339–407

    Article  Google Scholar 

  • Fritzsche-Hoballah ME, Turlings TCJ (2001) Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol Ecol Res 3:583–593

    Google Scholar 

  • Gomez JM, Zamora R (1994) Top-down effects in a tritrophic system: parasitoids enhance plant fitness. Ecology 75:1023–1030

    Article  Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157:262–281

    Article  CAS  PubMed  Google Scholar 

  • Hare DJ (2011) Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 56:161–180

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Van Dam NM, Gols R (2003) Interaction over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J Anim Ecol 72:520–531

    Article  Google Scholar 

  • Huntly N (1991) Herbivores and the dynamics of communities and ecosystems. Annu Rev Ecol Evo S 22:477–503

    Article  Google Scholar 

  • Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  • Koptur S, Smith CL, Lawton JH (1996) Effects of artificial defoliation on reproductive allocation in the common Vetch, Vacia sativa (Fabaceae: Papilinide). Am J Bot 83:886–889

    Article  Google Scholar 

  • Long RW (1977) Artificial induction of obligate cleistogamy in species hybrids in Ruellia (Acanthaceae). B Torrey Bot Club 104:53–56

    Article  Google Scholar 

  • López OP, Hénaut Y, Cancio J, Lambin M, Cruz-López L, Rojas JC (2009) Is host size an indicator of quality in the mass-reared parasitoid Diachasmimorpha longicaudata (Hymenoptera:Braconidae)? Fla Entomol 92:441–449

    Article  Google Scholar 

  • Lucas-Barbosa D (2016) Integrating studies on plant-pollinator and plant-herbivore interactions. Trends Plant Sci 21:125–133

    Article  CAS  PubMed  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1994) induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitor. J Chem Ecol 20:2229–2247

    Article  CAS  PubMed  Google Scholar 

  • May RM (1990) How many species? Phil Trans R Soc Lond B 330:293–304

    Article  Google Scholar 

  • Moayeri HRS, Ashouri A, Poll L, Enkegaard A (2007) Olfactory response of a predatory mirid to herbivore induced plant volatiles: multiple herbivory versus single herbivory. J Appl Entomol 131:326–332

    Article  CAS  Google Scholar 

  • Munguía-Rosas MA, Parra-Tabla V, Ollerton J, Cervera C (2012) Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae). Ann Bot 109:343–350

    Article  PubMed  Google Scholar 

  • Munguía-Rosas MA, Parra-Tabla V, Montiel S (2013a) Extreme variation in the reproductive phenology of the weed, Ruellia nudiflora. Weed Res 53:328–336

    Article  Google Scholar 

  • Munguía-Rosas MA, Abdala-Roberts L, Parra-Tabla V (2013b) Effects of pollen load, parasitoids and the environment on pre-dispersal seed predation in the cleistogamous Ruellia nudiflora. Oecologia 173:871–880

    Article  PubMed  Google Scholar 

  • Munguía-Rosas MA, Arias LM, Jurado-Dzib SG, Mezeta-Cob CR, Parra-Tabla V (2015) Effects of herbivores and pollinators on fruit yield and survival in a cleistogamous herb. Plant Ecol 216:517–525

    Article  Google Scholar 

  • Nakai Z, Kondo T, Akimoto S (2011) Parasitoid attack of the seed-feeding beetle Bruchus loti enhances the germination success of Lathyrus japonicus seeds. Arthropod-Plant Interact 5:227–234

    Article  Google Scholar 

  • Ortegón-Campos I, Parra-Tabla V, Abdala-Roberts L, Herrera CM (2009) Local adaptation of Ruellia nudiflora (Acanthaceae) to biotic counterparts: complex scenarios revealed when two herbivore guilds are considered. J Evol Biol 22:2288–2297

    Article  PubMed  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Evo Syst 11:41–65

    Article  Google Scholar 

  • Rodriguez-Saona C (2012) La ecología química de interacciones tri-tróficas. In: Rojas JC, Malo EA (eds) Temas selectos en Ecología química de insectos. El colegio de la Frontera Sur, Tapachula, pp 315–341

    Google Scholar 

  • Rodriguez-Saona C, Chalmers JA, Raj S, Thaler JS (2005) Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143:566–577

    Article  PubMed  Google Scholar 

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29

    Article  Google Scholar 

  • Soler R, Bezemer TM, Cortesero AM, van der Putten WH, Vet LEM, Harvey JA (2007) Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152:257–264

    Article  Google Scholar 

  • Steinberg S, Dicke M, Vet L, Wanningen R (1992) Response of the braconid parasitoid Cotesia (Apanteles) glomerata (L.) to volatile infochemicals: effects of bioassay setup, parasitoid age and experience and barometric flux. Entomol Exp Appl 63:163–175

    Article  CAS  Google Scholar 

  • Stowe KA, Marquis RJ, Hochwender CG, Simms EL (2000) The evolutionary ecology of tolerance to consumer damage. Annu Rev Ecol Evo Syst 31:565–595

    Article  Google Scholar 

  • Sznajder B, Harver JA (2003) Second and third trophic level effects of differences in plant species reflect dietary specialisation of herbivores and their endoparasitoids. Entomol Exp Appl 109:73–82

    Article  Google Scholar 

  • Takabayashi J, Takashi N, Takahashi S (1991) Plants produce attractants for Apateles kariyai, a parasitoid of Pseudaletia separate: cases of “communication” and “misunderstanding” in plant parasitoid interactions. Appl Entomol Zool 26:237–243

    Google Scholar 

  • Tooker JF, Hanks LM (2006) Tritrophic interactions and reproductive fitness of the prairie perennial Silphium laciniatum Gillette (Asteraceae). Environ Entomol 35:537–545

    Article  Google Scholar 

  • Turlings TCJ, Wäckers FL, Vet LEM, Lewis WJ, Tumlinson JH (1993) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj DR, Lewis AC (eds) Insect learning: Ecological and Evolutionary Perspectives. Chapman and Hall, New York, pp 51–78

    Chapter  Google Scholar 

  • Turner BL (1991) Texas species of Ruellia (Acanthaceae). Phytologia 71:281–289

    Article  Google Scholar 

  • Van Loon JJA, De Boer JG, Dicke M (2000) Parasitoid-plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97:219–227

    Article  Google Scholar 

  • Vos M, Berrocal SM, Karamaouna F, Hemerik L, Vet LEM (2001) Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecol Lett 4:38–45

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Whitman DW, Eller FJ (1990) Parasitic wasp oriented to green leaf volatiles. Chemoecology 1:69–75

    Article  CAS  Google Scholar 

  • Xi X, Eisenhauer S, Sun S (2015) Parasitoid wasps indirectly suppress seed production by stimulating consumption rates of their seed-feeding hosts. J Anim Ecol 84:1103–1111

    Article  PubMed  Google Scholar 

  • Zhang PJ, Zheng SJ, van Loon JJA, Boland W, David A, Mumm R, Dicke M (2009) White flies interfere with indirect plant defense against spider mites in lima bean. Proc Natl Acad Sci USA 106:21202–21207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Luis M. Arias for his support in collecting data and helping with plant maintenance in the nursery. Bianca Delfosse revised the English. This study was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACyT), projects CB-2012-177680 and INFR-2013-205-735. Complementary funds were provided by the Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Unidad Mérida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Munguía-Rosas.

Additional information

Handling Editor: Jeffrey Harvey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munguía-Rosas, M.A., León, A. & Martínez-Natarén, D.A. Parasitism on seed predators overcomes the detrimental effects of defoliation on plant fitness in a tritrophic system. Arthropod-Plant Interactions 10, 535–543 (2016). https://doi.org/10.1007/s11829-016-9459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9459-3

Keywords

Navigation