Skip to main content
Log in

Seed germination and seedling survival traits of invasive and non-invasive congeneric Ruellia species (Acanthaceae) in Yucatan, Mexico

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We compared requirements for seed germination and seedling establishment for Ruellia nudiflora, an invasive species in Yucatan, Mexico with those of the congeneric non-invasive R. pereducta. Germination and seedling survival rates were higher for R. nudiflora than for R. pereducta under high light. Additionally, the ranges of temperature and water potential that allow germination for R. nudiflora were much broader than those of R. pereducta. Seedlings of R. nudiflora exhibited higher survival to drought by shedding their leaves during drought, an important strategy in environments under extreme drought. Seedlings of R. nudiflora also exhibited higher extreme temperature tolerance than R. pereducta seedlings. Overall, traits exhibited by R. nudiflora such as ability to germinate under a wide range of conditions, adaptation to environmental stress and high tolerance to environmental heterogeneity during the seedling stage, have been repeatedly recognized as determinants of colonization success of invasive species in open disturbed areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Mon 74:25–44

    Article  Google Scholar 

  • Andrade JL (2003) Dew deposition on epiphytic bromeliads leaves: an important event in a Mexican tropical dry deciduous forest. J Trop Ecol 19:479–488. doi:10.1017/S0266467403003535

    Article  Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192. doi:10.1007/s004420050920

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2001) Seeds; ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Binggeli P (1996) A taxonomic, biogeographical and ecological overview of invasive woody plants. J Veg Sci 7:121–124. doi:10.2307/3236424

    Article  Google Scholar 

  • Campos-Ríos MG, Chiang F (2006) Una revision nomenclatural de los tipos de plantas de la Península de Yucatán (México). Polibotanica 22:89–149

    Google Scholar 

  • Cervera JC, Andrade JL, Simá JL, Graham E (2006) Microhabitats, germination and establishment for Mammillaria gaumeri (Cactaceae), a rare species from Yucatan. Int J Plant Sci 167:311–319. doi:10.1086/498650

    Article  Google Scholar 

  • Clark JS, Lewis M, Horvath L (2001) Invasion by extremes: population spread with variation in dispersal and reproduction. Am Nat 157:537–554. doi:10.1086/319934

    Article  CAS  PubMed  Google Scholar 

  • Daniel TF (1997) The Acanthaceae of California and the Peninsula of Baja California. Proc Calif Acad Sci 49:309–403

    Google Scholar 

  • Didden-Zopfy B, Nobel PS (1982) High temperature tolerance and heat acclimation of Opuntia bigelovii. Oecologia 52:176–180. doi:10.1007/BF00363833

    Article  Google Scholar 

  • Engelbrecht BMJ, Kursar TA (2003) Comparative drought resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 136:383–393. doi:10.1007/s00442-003-1290-8

    Article  PubMed  Google Scholar 

  • Epstein E, Bloom AJ (2004) Mineral nutrition of plants: principles and perspectives. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Goldberg D (1987) Neighborhood competition in an old-field plant community. Ecology 68:1211–1223

    Article  Google Scholar 

  • Kleeman SGL, Chauhan BS, Gill GS (2007) Factors affecting seed germination of perennial wall rocket (Diplotaxis tenuifolia) in Southern Australia. Weed Sci 55:481–485. doi:10.1614/WS-06-197.1

    Article  CAS  Google Scholar 

  • Long RW (1977) Artificial induction of obligate cleistogamy in species hybrids in Ruellia (Acanthaceae). Bull Torrey Bot Club 104:53–56. doi:10.2307/2484665

    Article  Google Scholar 

  • Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121. doi:10.1016/0006-3207(96)00021-3

    Article  Google Scholar 

  • McAlpine KG, Drake DR (2002) The effects of small-scale environmental heterogeneity on seed germination in experimental treefall gaps in New Zealand. Plant Ecol 165:207–215. doi:10.1023/A:1022247707932

    Article  Google Scholar 

  • McAlpine KG, Jesson LK (2008) Linking seed dispersal, germination and seedling recruitment in the invasive species Berberis darwinii (Darwin’s barberry). Plant Ecol 197:119–129. doi:10.1007/s11258-007-9365-y

    Article  Google Scholar 

  • McDowell SLC (2002) Photosynthetic characteristics of invasive and non-invasive species of Rubus (Rosaceae). Am J Bot 89:1431–1438. doi:10.3732/ajb.89.9.1431

    Article  Google Scholar 

  • Meyer J-Y, Lavergne C (2004) Beautés fatales: Acanthaceae species as invasive alien plants on tropical Indo-Pacific islands. Divers Distrib 10:333–347. doi:10.1111/j.1366-9516.2004.00094.x

    Article  Google Scholar 

  • Michel BE, Radcliffe D (1995) A computer program relating solute potential to solution composition for five solutes. Agron J 87:126–130

    Article  CAS  Google Scholar 

  • Nobel PS, De la Barrera E (2003) Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica. New Phytol 157:271–279. doi:10.1046/j.1469-8137.2003.00675.x

    Article  Google Scholar 

  • Noble IR (1988) Plant ecology. Academic Press, London

    Google Scholar 

  • Pons TL (1991) Induction of dark dormancy in seeds: its importance for the seed bank in the soil. Funct Ecol 5:669–675. doi:10.2307/2389487

    Article  Google Scholar 

  • Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331. doi:10.1111/j.1744-7429.2007.00380.x

    Article  Google Scholar 

  • Pysek P (1998) Is there a taxonomic pattern to plant invasions? Oikos 82:282–294. doi:10.2307/3546968

    Article  Google Scholar 

  • Pysek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Biological invasions, ecological studies 193. Springer Verlag, Berlin, pp 97–125

    Google Scholar 

  • Rejmanek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181. doi:10.1016/0006-3207(96)00026-2

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332. doi:10.1146/annurev.ecolsys.32.081501.114037

    Article  Google Scholar 

  • Schütz W, Milberg P, Lamont BB (2002) Seed dormancy, after-ripening and light requirements of four annual Asteraceae in south-western Australia. Ann Bot (Lond) 90:707–714. doi:10.1093/aob/mcf250

    Article  Google Scholar 

  • Sokal RR, Rohlf JH (1969) Biometry. Freeman and Co, New York

    Google Scholar 

  • Standley PC, Williams LO, Gibson DN (1974) Flora of Guatemala. Bignoniaceae, Pedaliaceae, Martyniaceae, Orobanchaceae, Gesneriaceae, Lentibulariaceae, Acanthaceae. Plantaginaceae. Fieldiana Bot 24:153–466

    Google Scholar 

  • Tripp E (2007) Evolutionary relationships within the species-rich genus Ruellia (Acanthaceae). Syst Bot 32:628–649. doi:10.1600/036364407782250625

    Article  Google Scholar 

  • Turner BL (1991) Texas species of Ruellia (Acanthaceae). Phytologia 71:281–299

    Google Scholar 

  • Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439–1447. doi:10.1104/pp.102.018937

    Article  CAS  PubMed  Google Scholar 

  • Veenendaal EM, Swaine MD, Agyeman VK, Abebrese IK, Mullins CE (1996) Differences in plant and soil water relations in and around a forest gap in West Africa may influence seedling establishment and survival. J Ecol 84:83–90. doi:10.2307/2261702

    Article  Google Scholar 

  • Villaseñor JL, Espinosa FJ (1998) Catálogo de malezas de México. Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México City

    Google Scholar 

  • Williams DG, Black RA (1993) Phenotypic variation in contrasting temperature environments: growth and photosynthesis in Pennisetum setaceum from different altitudes on Hawaii. Funct Ecol 7:623–633. doi:10.2307/2390140

    Article  Google Scholar 

Download references

Acknowledgements

We thank Luis Salinas, Dennis Marrufo for field assistance and Luis Abdala and two anonymous reviewers for comments that improved an earlier version of the manuscript. This study was financially supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) through a postdoctoral fellowship to JCC and as part of a grant given to VPT (SEP 2004-CO1-4658A/A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos Cervera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervera, J.C., Parra-Tabla, V. Seed germination and seedling survival traits of invasive and non-invasive congeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Plant Ecol 205, 285–293 (2009). https://doi.org/10.1007/s11258-009-9617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9617-0

Keywords

Navigation