Skip to main content
Log in

Olfactory responses of Neoseiulus cucumeris (Acari: Phytoseiidae) to odors of host plants and Frankliniella occidentalis (Thysanoptera: Thripidae)–plant complexes

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2011

Abstract

We studied the olfactory responses of Neoseiulus cucumeris (Acari: Phytoseiidae) to odors from eggplant (Solanum melongena L.), pepper (Capsicum aunuum), and tomato (Solanum lycopersicum), three host plants, and their complexes with different treatments (undamaged, mechanically damaged, infested, pre-infested) in an olfactometer. The results showed that N. cucumeris preferred the odors of undamaged eggplant, pepper, and tomato to clean air. N. cucumeris preferred the volatiles from eggplant infested with Frankliniella occidentalis (Thysanoptera: Thripidae) over undamaged, mechanically damaged, and pre-infested with F. occidentalis eggplant volatiles. The same results were observed with pepper and tomato. N. cucumeris adults preferred the odors of undamaged eggplant and tomato to undamaged pepper. Similarly, same results were observed with mechanically damaged eggplant, pepper, tomato, and same plants pre-infested with F. occidentalis. Compared with odors of tomato infested with F. occidentalis, N. cucumeris adults significantly responded to odors of eggplant and pepper infested with F. occidentalis. There was no significant difference of N. cucumeris in making choice between eggplant infested with F. occidentalis and pepper infested with F. occidentalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adedipe F, Park YL (2010) Visual and olfactory preference of Harmonia axyridis (Coleoptera: Coccinellidae) adults to various companion plants. J Asia-Pacific Entomol 13:319–323

    Article  Google Scholar 

  • Aratchige NS, Lesna I, Sabelis MW (2004) Below-ground plant parts emit herbivore-induced volatiles: olfactory responses of a predatory mite to tulip bulbs infested by rust mites. Exp Appl Acarol 33:21–30

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A et al (2006) Volatile signaling in plant-plant interactions: talking trees in the genomics era. Science 311:812–815

    Article  PubMed  CAS  Google Scholar 

  • Blaeser P, Sengonca C, Zegula T (2004) The potential use of different predatory bug species in the biological control of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). J Pest Sci 77:211–219

    Article  Google Scholar 

  • Boer JG, Hordijk CA, Posthumus MA et al (2008) Prey and non-prey arthropods sharing a host plant: effects on induced volatile emission and predator attraction. J Chem Ecol 34:218–290

    Article  Google Scholar 

  • Christian A, Maria C, Andrea S et al (2009) Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. Petraea, a perennial, outcrossing relative of A. thaliana. Planta 230:1–11

    Article  Google Scholar 

  • Christoph J, Mayer AV, Jurgen G (2008) Pathogen-induced release of plant allomone manipulates vector insect behavior. J Chem Ecol 34:1518–1522

    Article  Google Scholar 

  • Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 92:131–142

    Article  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J et al (1990) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    Article  CAS  Google Scholar 

  • Dicke M, van Poecke RMP, de Boer JG (2003) Inducible indirect defense of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27–42

    Article  CAS  Google Scholar 

  • Dimitris SK, George DB (1999) Feeding history affects the response of the predatory mite Typhlodromus kerkirae (Acari: Phytoseiidae) to volatiles of plants infested with spider mites. Exp Appl Acarol 23:429–436

    Article  Google Scholar 

  • Dwumfour EF (1992) Volatile substances evoking orientation in the predatory flower bug Anthocoris nemorum (Heteroptera: Anthocoridae). Bull Entomol Res 82:465–469

    Article  Google Scholar 

  • Fatih D, Irfan T (2007) Insecticide resistance in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) collected from horticulture and cotton in Turkey. Aust J Entomol 46:320–324

    Article  Google Scholar 

  • Federico B, Paolo C, Massimiliano F et al (2009) Constitutive and herbivore- induced monoterpenes emitted by Populus × euroamericana leaves are key volatiles that orient Chrysomela populi beetles. Plant Cell Environ 32:542–552

    Article  Google Scholar 

  • Geervliet JBF, Vet LEM, Dicke M (1994) Volatiles from damaged plants as major cues in long–range host searching by the specialist parasitoid Cotesia rubecula. Entomol Exp Appl 73:289–297

    Article  CAS  Google Scholar 

  • Gencer NS, Kumral NA, Sivritepe HO (2009) Olfactory response of the ladybird beetle Stethorus gilvifrons to two preys and herbivore-induced plant volatiles. Phytoparasitica 37:217–224

    Article  Google Scholar 

  • Germinara GS, Cristofaro AD, Rotundo G (2009) Antennal olfactory responses to individual cereal volatiles in Theocolax elegans (Westwood) (Hymenoptera: Pteromalidae). J Stored Prod Res 45:195–200

    Article  CAS  Google Scholar 

  • Giovanna M, Piero R, Luciana T (2003) Detection of Tomato spotted wilt virus in its vector Frankliniella occidentalis by reverse transcription-polymerase chain reaction. J Virol Methods 109:69–73

    Article  Google Scholar 

  • Grant H, Sonya B, Alan C (2007) Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) chemical control: residues associated with the three consecutive spray strategy. Aust J Entomol 46:146–151

    Article  Google Scholar 

  • Herron GA, Cook DF (2002) Initial verification of the resistance management strategy for Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in Australia. Aust J Entomol 41:187–191

    Article  Google Scholar 

  • Jager CMD, Butot RPT, Klinkhamer PGL et al (1995) Genetic variation in chrysanthemum for resistance to Frankliniella occidentalis. Entomlogia Experimentalis et Applicata 77:277–287

    Article  Google Scholar 

  • Janssen A (1999) Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomologia Experimentalis et Applicata 90:191–198

    Article  Google Scholar 

  • Jean-Luc B, Gontran S, Zoltan TN et al (2009) Defense by volatiles in leaf-mining insect larvae. J Chem Ecol 35:507–517

    Article  Google Scholar 

  • Kirsten K, Beate B, Christine A et al (2008) Prey location and prey choice by the freshwater leech Erpobdella octoculata using foraging kairomones. Freshw Biol 53:1524–1530

    Article  Google Scholar 

  • Kong CK, Hu F, Xu XH et al (2005) Volatile allelochemicals in the Ageratum conyzoides intercropped citrus orchard and their effects on mites Amblyseius newsami and Panonychus citri. J Chem Ecol 31:2193–2203

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Takabayashi J (2001) Production of herbivore-induced plant volatiles and their attractiveness to Phytoseius persimilis (Acari: phytoseiidae) with changes of Tetranychus urticae (Acari: Tetranychidae) density on a plant. Appl Entomol Zool 36:47–52

    Article  Google Scholar 

  • Maeda T, Takabayashi J, Yano S et al (2000) The effects of rearing conditions on the olfactory response of predatory mites Phytoseiulus persimilis and Amblyseius womerleyi (Acari: Phytoseiidae). Appl Entomol Zool 35:345–351

    Article  Google Scholar 

  • Maeda T, Liu YN, Ishiwari H et al (2006) Conditioned olfactory responses of a predatory mite, Neoseiulus womersleyi, to volatiles from prey-infested plants. Entomologia Experimentalis et Applicata 121:167–175

    Article  CAS  Google Scholar 

  • Melanie MD, Ruth CB, David AJK (2006) Starvation period and age affect the response of female Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to odor and visual cues. J Insect Physiol 52:729–736

    Article  Google Scholar 

  • Messelink GJ, Sebastiaan SEFV, Ramakers PMJ (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768

    Article  Google Scholar 

  • Michael R, Katharina E (2008) Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defense hypothesis. Chemoecology 18:29–38

    Article  Google Scholar 

  • Nachappa P, Margolies DC, Nechols JR et al (2006) Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days. Exp Appl Acarol 40:231–239

    Article  PubMed  Google Scholar 

  • Pedro JE, Pablo B, Josefina C et al (2002) Insecticide resistance in field populations of Frankliniella occidentalis (Pergande) in Murcia (south-east Spain). Pest Manag Sci 58:967–971

    Article  Google Scholar 

  • Reddy GVP (2002) Plant volatiles mediate orientation and plant preference by the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). Biol Control 25:49–55

    Article  CAS  Google Scholar 

  • Reddy GVP, Holopainen JK, Guerrero A (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larva frass and green leaf cabbage volatiles. J Chem Ecol 28:131–143

    Article  PubMed  CAS  Google Scholar 

  • Reid CD, Lampman RL (1989) Olfactory responses of Orius insidiosus (Hemiptera: Anthocoridae) to volatiles of corn silks. J Chem Ecol 15:1109–1115

    Article  Google Scholar 

  • Rieta G, Jeffrey AH (2009) Plant-mediated effects in the Brassicaceae on the performance and behavior of parasitoids. Phytochem Rev 8:187–206

    Article  Google Scholar 

  • Satoshi T, Takeshi S (2008) Olfactory responses of the predatory mites (Neoseiulus cucumeris) and insects (Orius strigicollis) to two different plant species infested with onion thrips (Thrips tabaci). J Chem Ecol 34:605–613

    Article  Google Scholar 

  • Shimoda T (2010) A key volatile infochemical that elicits a strong olfactory response of the predatory mite Neoseiulus californicus, an important natural enemy of the two-spotted spider mite Tetranychus unticae. Exp Appl Acarol 50:9–22

    Article  PubMed  CAS  Google Scholar 

  • Shimoda T, Dicke M (1999) Volatile stimuli related to feeding activity of nonprey caterpillars, Spodoptera exigua, affect olfactory response of the predatory mite Phytoseiulus persimilis. J Chem Ecol 25:1585–1595

    Article  CAS  Google Scholar 

  • Steidle JLM, van Loon JJA (2003) Dietary specialization and infochemical use in carnivorous arthropods: testing a concept. Entomologia Experimentalis et Applicata 108:133–148

    Article  Google Scholar 

  • Takabayashi J, Shimoda T, Dicke M et al (2000) Induced response of tomato plants to injury by green and red strains of Tetranychus urticae. Exp Appl Acarol 24:377–383

    Article  PubMed  CAS  Google Scholar 

  • Takabayashi J, Sabelis MW, Janssen A et al (2006) Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecol Res 21:3–8

    Article  Google Scholar 

  • Tea A, Netta K, Annette H et al (2009) Larval parasitism of the autumnal moth reduces feeding intensity on the mountain birch. Oecologia 159:539–547

    Article  Google Scholar 

  • Terri J, Cynthia SD, Ron H et al (2005) The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario. Pest Manag Sci 61:179–185

    Article  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Uefune M, Nakashima Y, Tagashira E et al (2010) Response of Wollastoniella rotunda (Hemiptera: Anthocoridae) to volatiles from eggplants infested with its prey Thrips palmi and Tetranychus kanzawai: prey species and density effects. Biol Control 54:19–22

    Article  CAS  Google Scholar 

  • Van Driesche RG, Lyon S, Stanek EJ III et al (2006) Evaluation of efficacy of Neoseiulus cucumeris for control of western flower thrips in spring bedding crops. Biol Control 36:203–215

    Article  Google Scholar 

  • Vet LEM (1985) Olfactory microhabitat location in some eucoilid and alysiine species (Hymenoptera), larval parasitoids of Diptera. Neth J Zool 35:720–730

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 32:141–172

    Article  Google Scholar 

  • Vet LEM, Van OK (1985) Olfactory microhabitat selection in Leptopilina heterotoma (Thomson) (Hym: Eucoilidae), a parasitoid of Drosophilidae. Neth J Zool 35:497–504

    Article  Google Scholar 

  • Vinson SB (1998) The general host selection behavior of parasitoid hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11:79–96

    Article  Google Scholar 

  • Wijk M, Bruijn PJA, Sabelis MW (2008) Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. J Chem Ecol 34:791–803

    Article  PubMed  Google Scholar 

  • Willem JDK, Anneke BB, Marieke VDH et al (1997) Resistance to western flower thrips in greenhouse cucumber: effect of leaf position and plant age on thrips reproduction. Euphytica 94:63–67

    Article  Google Scholar 

  • William DJK, Terry LI (2003) The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric For Entomol 5:301–310

    Article  Google Scholar 

  • Wittmann EJ, Leather SR (1997) Compatibility of Orius laevigatus Fieber (Hemiptera: Anthocoridae) With Neseiulus (Amblyseius) cucumeris Oudemans (Acari: Phytoseiidae) and Iphiseius (Amblyseius) degenerans Berlese (Acari: Phytoseiidae) in the biocontrol of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Exp Appl Acarol 21:523–538

    Article  Google Scholar 

  • Zilahi-Balogh GMG, Shipp JL, Cloutier C et al (2007) Predation by Neoseiulus cucumeris on western flower thrips and its oviposition on greenhouse cucumber under winter vs. summer conditions in a temperate climate. Biol Control 40:160–167

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Bao-xin Zhang for providing us with the predatory mites. We also express gratitude to Mr. Xiao-yin Shao for supplying experiment plants. The study was supported by Special Fund for Agro-scientific Research in the Public Interest (Project number: 20080325) of the Department of Agriculture, the People Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Lu.

Additional information

Handling Editors: Anna-Karin Borg-Karlson and Heikki Hokkanen.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11829-011-9156-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, F., He, YR., Gao, Y. et al. Olfactory responses of Neoseiulus cucumeris (Acari: Phytoseiidae) to odors of host plants and Frankliniella occidentalis (Thysanoptera: Thripidae)–plant complexes. Arthropod-Plant Interactions 5, 307–314 (2011). https://doi.org/10.1007/s11829-011-9135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-011-9135-6

Keywords

Navigation