Skip to main content
Log in

Seed desiccation limits removal by ants

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Ants collect and disperse seeds that bear an attractive nutritive body called the elaiosome. In mesic habitats, many myrmecochorous plant species have elaiosomes that are usually soft and desiccation-sensitive. The aim of this study was to link the desiccation rate of two species of seeds (Chelidonium majus and Viola odorata) to the seed-removing behaviour of the ant Myrmica rubra. In laboratory experiments seeds of both species lost one-third of their weight in 24 h. Concurrently, seed removal rates decreased sharply (92%) for Viola odorata over 24 h and slowly for Chelidonium majus, which retained one-third of its attractiveness after one month of desiccation. Seeds recovered their initial weight almost entirely after being soaked in water for 18 h. This rehydration partially (Viola odorata) or totally (Chelidonium majus) restored the attractiveness of the seeds. In this paper, we show that the window of seed attractiveness during which ant–plant interactions occur is desiccation-dependent and plant-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Ann Rev Ecol Syst 38:567–593

    Article  Google Scholar 

  • Beattie A, Hughes L (2002) Ant–plant interactions. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 211–235

    Google Scholar 

  • Berg RY (1958) Seed dispersal, morphology, and phylogeny of Trillium. Skr Norske Vidensk-Akad Mat-Naturvidensk 1:1–36

    Google Scholar 

  • Berg RY (1966) Seed dispersal of Dendromecon: its ecologic, evolutionary, and taxonomic significance. Am J Bot 53:61–73

    Article  Google Scholar 

  • Berg RY (1975) Myrmecochorous plants in Australia and their dispersal by ants. Aust J Bot 23:475–508

    Article  Google Scholar 

  • Bianchini M, Pacini E (1996) The caruncle of Ricinus communis L. (Castor Bean): its development and role in seed dehydration, rehydration, and germination. Int J Plant Sci 157:40–48

    Article  Google Scholar 

  • Boulay R, Carro F, Soriguer RC, Cerda X (2007) Synchrony between fruit maturation and effective dispersers’ foraging activity increases seed protection against seed predators. Proc R Soc Lond B 274:2515–2522

    Article  Google Scholar 

  • Bresinsky A (1963) Bau, Entwicklungsgeschichte und Inhaltsstoffe der Elaiosomen Studien zur myrmekochoren Verbreitung von Samen und Früchhten. Bibl Bot 126:1–54

    Google Scholar 

  • Brew CR, O’Dowd DJ, Rae ID (1989) Seed dispersal by ants: behaviour-releasing compounds in elaiosomes. Oecologia 80:490–497

    Article  Google Scholar 

  • Bülow-Olsen A (1984) Diplochory in Viola: a possible relation between seed dispersal and soil seed bank. Am Midl Nat 112:251–260

    Article  Google Scholar 

  • Cammaerts M-C (1977) Recrutement d’ouvrières vers une source d’eau pure ou sucrée chez la fourmi Myrmica rubra L. Biol Behav 2:287–308

    Google Scholar 

  • Cardina J, Norquay HM, Stinner BR, McCartney DA (1996) Postdispersal predation of velvetleaf (Abutilon theophrasti) seeds. Weed Sci 44:534–539

    CAS  Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257

    Article  Google Scholar 

  • Delatte E, Chabrerie O (2008) Performances des plantes herbacées dorestières dans la dispersion de leurs graines par la fourmi Myrmica ruginodis. C R Biol 331:309–320

    Article  PubMed  Google Scholar 

  • Edwards W, Dunlop M, Rodgerson L (2006) The evolution of rewards: seed dispersal, seed size and elaiosome size. J Ecol 94:687–694

    Article  Google Scholar 

  • Elzinga JA, Atlan A, Biere A, Gigord L, Weis A, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439

    Article  PubMed  Google Scholar 

  • Fedriani JM, Rey PJ, Garrido JL, Guitián J, Herrera CM, Medrano M, Sánchez-Lafuente AM, Cerdá X (2004) Geographical variation in the potential of mice to constrain an ant-seed dispersal mutualism. Oikos 105:181–191

    Article  Google Scholar 

  • Gorb SN, Gorb EV (1995) Removal rates of seeds of five myrmecochorous plants by the ant Formica polyctena (Hymenoptera: Formicidae). Oikos 73:367–374

    Article  Google Scholar 

  • Gorb SN, Gorb EV (1999) Effects of ant species composition on seed removal in deciduous forest in eastern Europe. Oikos 84:110–118

    Article  Google Scholar 

  • Guitián P, Medrano M, Guitián J (2003) Seed dispersal in Erythronium dens-canis L (Liliaceae): variation among habitats in a myrmecochorous plant. Plant Ecol 169:171–177

    Article  Google Scholar 

  • Hanzawa FM, Beattie A, Holmes A (1985) Dual function of the elaiosome of Corydalis aurea (Fumariaceae): attraction of dispersal agents and repulsion of Peromyscus maniculatus, a seed predator. Am J Bot 72:1707–1711

    Article  Google Scholar 

  • Heithaus ER (1981) Seed predation by rodents on three ant-dispersed plants. Ecology 62:136–145

    Article  Google Scholar 

  • Heithaus ER, Heithaus PA, Liu SY (2005) Satiation in collection of myrmecochorous diaspores by colonies of Aphaenogaster rudis (Formicidae: Myrmicinae) in central Ohio, USA. J Insect Behav 18:827–846

    Article  Google Scholar 

  • Herrera CM (2002) Seed dispersal by vertebrates. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 185–208

    Google Scholar 

  • Hughes L, Westoby M, Jurado E (1994) Convergence of elaisomes and insect prey: evidence from ant foraging behavior and fatty acid composition. Funct Ecol 8:358–365

    Article  Google Scholar 

  • Janet C (1897) Études sur les fourmis, les guêpes et les abeilles. Note 15: Appareils pour l’observation des fourmis et des animaux myrmécophiles. Mémoires de la Société Zoologique de France 10:302–323

    Google Scholar 

  • Kjellsson G (1985) Seed fate in a population of Carex pilulifera L. I. Seed dispersal and ant-seed mutualism. Oecologia 67:416–423

    Article  Google Scholar 

  • Lambinon J, de Langhe J-E, Delvosalle L, Duvigneaud J (1992) Nouvelle flore de la Belgique, du Grand-Duché de Luxembourg, du nord de la France et des régions voisines (Ptéridophytes et Spermatophytes). Jardin Botanique de Belgique, Meise

  • Le Roux AM, Le Roux G, Thibout E (2002) Food experience on the predatory behavior of the ant Myrmica rubra towards a specialist moth, Acrolepiopsis assectella. J Chem Ecol 28:2307–2314

    Article  CAS  PubMed  Google Scholar 

  • Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, Dordrecht

    Google Scholar 

  • Manzaneda AJ, Fedriani JM, Rey PJ (2005) Adaptive advantages of myrmecochory: the predator-avoidance hypothesis tested over a wide geographic range. Ecography 28:583–592

    Article  Google Scholar 

  • Manzaneda AJ, Rey PJ, Boulay R (2007) Geographic and temporal variation in the ant-seed dispersal assemblage of the perennial herb Helleborus foetidus L. (Ranunculaceae). Biol J Linn Soc 92:135–150

    Article  Google Scholar 

  • Mark S, Olesen JM (1996) Importance of elaiosome size to removal of ant-dispersed seeds. Oecologia 107:95–101

    Article  Google Scholar 

  • Mayer V, Ölzant S, Fischer RC (2005) Myrmecochorous seed dispersal in temperate regions. In: Forget P-M, Lambert JE, Hulme PE, Vander Wall SB (eds) Seed fate: predation, dispersal and seedling establishment. CABI Publishing, Wallingford, pp 175–195

    Google Scholar 

  • Oberrath R, Bohning-Gaese K (2002) Phenological adaptation of ant-dispersed plants to seasonal variation in ant activity. Ecology 83:1412–1420

    Article  Google Scholar 

  • Ohara M, Higashi S (1987) Interference by ground beetles with the dispersal by ants of seeds of Trillium species (Liliaceae). J Ecol 75:1091–1098

    Article  Google Scholar 

  • Pausch RD, Pausch LM (1980) Observations on the biology of the slender seedcorn beetle, Clivina impressifrons (Coleoptera: Carabidae). Great Lakes Entomol 13:189–194

    Google Scholar 

  • Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 157–184

    Google Scholar 

  • Peters M, Oberrath R, Böhning-Gaese K (2003) Seed dispersal by ants: are seed preferences influenced by foraging strategies or historical constraints? Flora 198:413–420

    Google Scholar 

  • Ready CC, Vinson SB (1995) Seed selection by the red imported fire ant (Hymenoptera: Formicidae) in the laboratory. Environ Entomol 24:1422–1431

    Google Scholar 

  • Sernander R (1906) Entwurf einer Monographie der europäischen Myrmekochoren. K Sv Vetensk Akad Handl 41:1–410

    Google Scholar 

  • Servigne P, Detrain C (2008) Ant–seed interactions: combined effects of ant and plant species on seed removal patterns. Insectes Sociaux 55:220–230

    Article  Google Scholar 

  • Smith BH, Rosenheim ML, Swartz KR (1986) Reproductive ecology of Jeffersonia diphylla (Berberidaceae). Am J Bot 73:1416–1426

    Article  Google Scholar 

  • Szemes G (1943) Zur Entwicklung des Elaiosoms von Chelidonium majus. Öst Bot Zeit 92:215–219

    Article  Google Scholar 

  • Turnbull CL, Culver DC (1983) The timing of seed dispersal in Viola nuttallii: attraction of dispersers and avoidance of predators. Oecologia 59:360–365

    Article  Google Scholar 

  • Wehner R (1987) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara desert) and Ocymyrmex (Namib desert). In: Pasteels JM, Deneubourg J-L (eds) From individual to collective behavior in social insects. Birkhäuser, Basel, pp 15–42

    Google Scholar 

  • Werker E, Fahn A (1975) Seed anatomy of Pancratium species from three different habitats. Bot Gaz 136:396–403

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

We are grateful to Raphael Boulay, Rob Dunn, Audrey Dussutour and anonymous referees for helpful comments on an earlier version of this manuscript, Lise Diez for help in statistical analyses, and Dominique Dewulf for help in collecting ant colonies. This study was funded by a FRIA (Fonds pour la formation à la recherche dans l’Industrie et dans l’Agriculture) Ph.D. grant attributed to Pablo Servigne. Claire Detrain is a senior research associate from the FNRS (Belgian National Fund for Scientific Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Servigne.

Additional information

Handling editor: Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Servigne, P., Detrain, C. Seed desiccation limits removal by ants. Arthropod-Plant Interactions 3, 225–232 (2009). https://doi.org/10.1007/s11829-009-9076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-009-9076-5

Keywords

Navigation