Skip to main content
Log in

Ionophoric activity of truncated gramicidin A analogue in phospholipid bilayers and mitochondrial and erythrocyte membranes

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Ionophoric activities of an N-terminus truncated gramicidin A (gA) analogue (mini-gramicidin) and its covalent dimer were studied in planar bilayer phospholipid membranes (BLM) using macroscopic current measurements (at high concentrations of the peptides) and single-channel recordings. As with gA-induced currents, mini-gramicidin-stimulated macroscopic currents through BLM underwent sensitized photoinactivation, i.e. were suppressed after irradiation with visible light in the presence of a photosensitizer generating singlet oxygen. The sensitivity of the tested compounds to photoinactivation descended in the following order: minigramicidin dimer > mini-gramicidin monomer > gA. The data from single-channel measurements and kinetic analysis of flash-induced photoinactivation obtained at different levels of macroscopic currents suggest that mini-gramicidin and its covalent dimer induce a variety of conducting states; their ratio depends on membrane thickness. Analysis of natural (mitochondrial and erythrocyte) membranes established that ionophoric activities of mini-gramicidin and its covalent dimer depend essentially on the membrane type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BLM:

bilayer lipid membrane

AlPcS3 :

trisulfonated aluminum phthalocyanine

DPhPC:

diphytanoylphosphaditylcholine

POPC:

palmitoyloleoylphosphaditylcholine

References

  1. Kelkar, D.A. and Chattopadhyay, A., The Gramicidin Ion Channel: A Model Membrane Protein, Biochim. et Biophys. Acta, 2007, vol. 1768, pp. 2011–2025.

    Article  CAS  Google Scholar 

  2. Arseniev, A.S., Barsukov, I.L., Bystrov, V.F., Lomize A.L., and Ovchinnikov, Y.A., NMR Study of Gramicidin A Transmembrane Ion Channel. Head-to-Head RightHanded, Single-Stranded Helices, Febs Lett., 1985, vol. 186, pp. 168–174.

    Article  PubMed  CAS  Google Scholar 

  3. Hladky, S.B. and Haydon, D.A., Ion Movements in Gramicidin Channels, Curr Topics Membrane Transport, 1984, vol. 21, pp. 327–372.

    Article  CAS  Google Scholar 

  4. Kotova, E.A. and Antonenko, Y.N., Sensitized Photoinactivation of Gramicidin Channels: Technique and Applications, Advances in Planar Lipid Bilayers and Liposomes, Tien, H.T. and Ottova-Leitmannova, A., Eds., Amsterdam: Academic Press, 2005, pp. 159–180.

    Google Scholar 

  5. Hamill, O.P. and Martinac, B., Molecular Basis of Mechanotransduction in Living Cells, Physiol. Rev., 2001, vol. 81, pp. 685–740.

    PubMed  CAS  Google Scholar 

  6. Arndt, H.D., Knoll A., and Koert, U., Synthesis of Minigramicidin Ion Channels and Test of Their Hydrophobic Match with the Membrane, Chembiochem., 2001, vol. 2, pp. 221–223.

    Article  PubMed  CAS  Google Scholar 

  7. Arndt, H.D., Bockelmann, D., Knoll, A., Lamberth, S., Griesinger, C., and Koert, U., Cation Control in Functional Helical Programming: Structures of A D,L-Peptide Ion Channel, Angew. Chem. Int. Ed., 2002, vol. 41, pp. 4062–4065.

    Article  CAS  Google Scholar 

  8. Mueller, P., Rudin, D.O., Tien, H.T., and Wescott, W.C., Methods for the Formation of Single Bimolecular Lipid Membrane in Aqueous Solution, J. Phys. Chem., 1963, vol. 67, pp. 534–535.

    Article  CAS  Google Scholar 

  9. Rokitskaya, T.I., Antonenko, Yu.N., and Kotova, E.A., The Interaction of Phthalocyanine with Planar Lipid Bilayers: Photodynamic Inactivation of Gramicidin Channels, FEES Lett., 1993, vol. 329, pp. 332–335.

    Article  CAS  Google Scholar 

  10. Rokitskaya, T.I., Antonenko, Yu.N., and Kotova, E.A., Photodynamic Inactivation of Gramicidin Channels: A Flash-Photolysis Study, Biochim. et Biophys. Acta, 1996, vol. 1275, pp. 221–226.

    Article  Google Scholar 

  11. Rokitskaya, T.I., Block, M., Antonenko, Y.N., Kotova, E.A., and Pohl, P., Photosensitizer Binding to Lipid Bilayers As a Precondition for the Photoinactivation of Mem brane Channels, Biophys. J., 2000, vol. 78, pp. 2572–2580.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Antonenko, Yu.N., Kotova, E.A., and Rokitskaya, T.I., Photodynamic Effect As a Basis for the Relaxation Approach to the Study of Gramicidin Channels, Biologicheskie Membrany (Rus.), 2005, vol. 22, pp. 275–289.

    CAS  Google Scholar 

  13. Straessle, M. and Stark, G., Photodynamic Inactivation of an Ion Channel: Gramicidin A, Photochem. Photobiol., 1992, vol. 55, pp. 461–463.

    Article  CAS  Google Scholar 

  14. Woolley, G.A., Kapral, M.K., and Deber, C.M., Potential-Sensitive Membrane Association of a Fluorescent Dye, FEES Lett., 1987, vol. 224, pp. 337–342.

    Article  CAS  Google Scholar 

  15. Kotova, E.A., Rokitskaya, T.I., and Antonenko, Yu.N., Two Phases of Gramicidin Photoinactivation in Bilayer Lipid Membranes in the Presence of a Photosensitizer, Biologicheskiye Membrany (Rus.), 1999, vol. 16, pp. 336–343.

    CAS  Google Scholar 

  16. Lavi, A., Weitman, H., Holmes, R.T., Smith, K.M., and Ehrenberg, B., The Depth of Porphyrin in a Membrane and the Membrane's Physical Properties Affect the Pho tosensitizing Efficiency, Biophys. J., 2002, vol. 82, pp. 2101–2110.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. White, S.H., Formation of “Solvent-Free” Black Lipid Bilayer Membranes from Glyceryl Monooleate Dispersed in Squalene, Biophys. J., 1978, vol. 23, pp. 337–347.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Sychev, S.V., Sukhanov, S.V., Barsukov, L.I., and Ivanov, V.T., Structural Polymorphism of Gramicidin A Channels: Ion Conductivity and Spectral Studies, J. Peptide Sci., 1996, vol. 2, pp. 141–156.

    Article  CAS  Google Scholar 

  19. Mobashery, N., Nielsen, C., and Andersen, O.S., The Conformational Preference of Gramicidin Channels Is a Function of Lipid Bilayer Thickness, FEES Lett., 1997, vol. 412, pp. 15–20.

    Article  CAS  Google Scholar 

  20. Lougheed, T., Borisenko, V., Hand, C.E., and Woolley, G.A., Fluorescent Gramicidin Derivatives for Single-Molecule Fluorescence and Ion Channel Measurements, Bioconjug. Chem., 2001, vol. 12, pp. 594–602.

    Article  PubMed  CAS  Google Scholar 

  21. Rottenberg, H. and Koeppe, R.E., Mechanism of Uncoupling of Oxidative Phosphorylation by Gramicidin, Biochemistry, 1989, vol. 28, pp. 4355–4360.

    Article  PubMed  CAS  Google Scholar 

  22. Bunting, J.R., Influx and Efflux Kinetics of Cationic Dye Binding to Respiring Mitochondria, Biophys. Chem., 1992, vol. 42, pp. 163–175.

    Article  PubMed  CAS  Google Scholar 

  23. Pratap, PR., Novak, T.S., and Freedman, J.C., Two Mechanisms by Which Fluorescent Oxonols Indicate Membrane Potential in Human Red Blood Cells, Biophys. J., 1990, vol. 57, pp. 835–849.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Dutseva, E.A. Kotova, Yu.N. Antonenko, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 1, pp. 58–65.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutseva, E.A., Kotova, E.A. & Antonenko, Y.N. Ionophoric activity of truncated gramicidin A analogue in phospholipid bilayers and mitochondrial and erythrocyte membranes. Biochem. Moscow Suppl. Ser. A 2, 55–61 (2008). https://doi.org/10.1007/s11827-008-1009-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11827-008-1009-4

Keywords

Navigation