Skip to main content
Log in

Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: Protective efficacy of singlet oxygen quenchers depends on photosensitizer location

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal — in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AlPcS3 :

tri-sulfonated aluminum phthalocyanine

BLM:

bilayer lipid membrane

DOPC:

dioleoylphosphatidylcholine

DPhPC:

diphytanoylphosphatidylcholine

PDA:

photodynamic action

References

  1. Krasnovsky, A. A., Jr. (1998) Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies, Membr. Cell Biol., 12, 665–690.

    PubMed  Google Scholar 

  2. Ehrenberg, B., Anderson, J. L., and Foote, C. S. (1998) Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media, Photochem. Photobiol., 68, 135–140.

    Article  CAS  PubMed  Google Scholar 

  3. Kearns, D. R. (1971) Physical and chemical properties of singlet molecular oxygen, Chem. Rev., 71, 395–427.

    Article  CAS  Google Scholar 

  4. Lavi, A., Weitman, H., Holmes, R. T., Smith, K. M., and Ehrenberg, B. (2002) The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensitizing efficiency, Biophys. J., 82, 2101–2110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bronshtein, I., Afri, M., Weitman, H., Frimer, A. A., Smith, K. M., and Ehrenberg, B. (2004) Porphyrin depth in lipid bilayers as determined by iodide and parallax fluorescence quenching methods and its effect on photosensitizing efficiency, Biophys. J., 87, 1155–1164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dror, S. B., Bronshtein, I., Garini, Y., O’Neal, W. G., Jacobi, P. A., and Ehrenberg, B. (2009) The localization and photosensitization of modified chlorin photosensitizers in artificial membranes, Photochem. Photobiol. Sci., 8, 354–361.

    Article  PubMed  Google Scholar 

  7. Lissi, E. A., Encinas, M. V., Lemp, E., and Rubio, M. A. (1993) Singlet oxygen O2(1-Delta-G) bimolecular processes — solvent and compartmentalization effects, Chem. Rev., 93, 699–723.

    Article  CAS  Google Scholar 

  8. Wilkinson, F., Helman, W. P., and Ross, A. B. (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet-state of molecular-oxygen in solution — an expanded and revised compilation, J. Phys. Chem. Ref. Data, 24, 663–1021.

    Article  CAS  Google Scholar 

  9. Davies, M. J. (2005) The oxidative environment and protein damage, Biochim. Biophys. Acta, 1703, 93–109.

    Article  CAS  PubMed  Google Scholar 

  10. Giulivi, C., Sarcansky, M., Rosenfeld, E., and Boveris, A. (1990) The photodynamic effect of rose bengal on proteins of the mitochondrial inner membrane, Photochem. Photobiol., 52, 745–751.

    Article  CAS  PubMed  Google Scholar 

  11. Moreno, G., Poussin, K., Ricchelli, F., and Salet, C. (2001) The effects of singlet oxygen produced by photodynamic action on the mitochondrial permeability transition differ in accordance with the localization of the sensitizer, Arch. Biochem. Biophys., 386, 243–250.

    Article  CAS  PubMed  Google Scholar 

  12. Rodrigues, T., De Franca, L. P., Kawai, C., De Faria, P.A., Mugnol, K. C., Braga, F. M., Tersariol, I. L., Smaili, S. S., and Nantes, I. L. (2007) Protective role of mitochondrial unsaturated lipids on the preservation of the apoptotic ability of cytochrome c exposed to singlet oxygen, J. Biol. Chem., 282, 25577–25587.

    Article  CAS  PubMed  Google Scholar 

  13. Strassle, M., and Stark, G. (1992) Photodynamic inactivation of an ion channel: gramicidin A, Photochem. Photobiol., 55, 461–463.

    Article  CAS  PubMed  Google Scholar 

  14. Rokitskaya, T. I., Antonenko, Y. N., and Kotova, E. A. (1993) The interaction of phthalocyanine with planar lipid bilayers - photodynamic inactivation of gramicidin channels, FEBS Lett., 329, 332–335.

    Article  CAS  PubMed  Google Scholar 

  15. Kunz, L., Zeidler, U., Haegele, K., Przybylski, M., and Stark, G. (1995) Photodynamic and radiolytic inactivation of ion channels formed by gramicidin A: oxidation and fragmentation, Biochemistry, 34, 11895–11903.

    Article  CAS  PubMed  Google Scholar 

  16. Rokitskaya, T. I., Antonenko, Y. N., and Kotova, E. A. (1997) Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics, Biophys. J., 73, 850–854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rokitskaya, T. I., Block, M., Antonenko, Y. N., Kotova, E. A., and Pohl, P. (2000) Photosensitizer binding to lipid bilayers as a precondition for the photoinactivation of membrane channels, Biophys. J., 78, 2572–2580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Shapovalov, V. L., Rokitskaya, T. I., Kotova, E. A., Krokhin, O. V., and Antonenko, Y. N. (2001) Effect of fluoride anions on gramicidin photoinactivation sensitized by sulfonated aluminum phthalocyanines, Photochem. Photobiol., 74, 1–7.

    Article  CAS  PubMed  Google Scholar 

  19. Antonenko, Yu. N., Kotova, E. A., and Rokitskaya, T. I. (2005) Photodynamic action as a basis for relaxation method of the study of gramicidin channels, Biol. Membr. (Moscow), 22, 275–289.

    CAS  Google Scholar 

  20. Pashkovskaya, A. A., Sokolenko, E. A., Sokolov, V. S., Kotova, E. A., and Antonenko, Y. N. (2007) Photodynamic activity and binding of sulfonated metallophthalocyanines to phospholipid membranes: contribution of metal-phosphate coordination, Biochim. Biophys. Acta, 1768, 2459–2465.

    Article  CAS  PubMed  Google Scholar 

  21. Pashkovskaya, A. A., Maizlish, V. E., Shaposhnikov, G. P., Kotova, E. A., and Antonenko, Y. N. (2008) Role of electrostatics in the binding of charged metallophthalocyanines to neutral and charged phospholipid membranes, Biochim. Biophys. Acta, 1778, 541–548.

    Article  CAS  PubMed  Google Scholar 

  22. Antonenko, Y. N., Kotova, E. A., Omarova, E. O., Rokitskaya, T. I., Ol’shevskaya, V. A., Kalinin, V. N., Nikitina, R. G., Osipchuk, J. S., Kaplan, M. A., Ramonova, A. A., Moisenovich, M. M., Agapov, I. I., and Kirpichnikov, M. P. (2014) Photodynamic activity of the boronated chlorin e6 amide in artificial and cellular membranes, Biochim. Biophys. Acta, 1838, 793–801.

    Article  CAS  PubMed  Google Scholar 

  23. Rokitskaya, T. I., Kotova, E. A., Agapov, I. I., Moisenovich, M. M., and Antonenko, Y. N. (2014) Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen, FEBS Lett., 588, 1590–1595.

    Article  CAS  PubMed  Google Scholar 

  24. Moisenovich, M. M., Ol’shevskaya, V. A., Rokitskaya, T. I., Ramonova, A. A., Nikitina, R. G., Savchenko, A. N., Tatarskiy, V. V., Jr., Kaplan, M. A., Kalinin, V. N., Kotova, E. A., Uvarov, O. V., Agapov, I. I., Antonenko, Y. N., and Shtil, A. A. (2010) Novel photosensitizers trigger rapid death of malignant human cells and rodent tumor transplants via lipid photodamage and membrane permeabilization, PLoS One, 5, E127–7.

    Article  Google Scholar 

  25. Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C. (1963) Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem., 67, 534–535.

    Article  CAS  Google Scholar 

  26. Rokitskaya, T. I., Antonenko, Y. N., and Kotova, E. A. (1996) Photodynamic inactivation of gramicidin channels: a flash-photolysis study, Biochim. Biophys. Acta, 1275, 221–226.

    Article  PubMed  Google Scholar 

  27. Pashkovskaya, A., Kotova, E., Zorlu, Y., Dumoulin, F., Ahsen, V., Agapov, I., and Antonenko, Y. (2010) Light-triggered liposomal release: membrane permeabilization by photodynamic action, Langmuir, 26, 5726–5733.

    Article  CAS  PubMed  Google Scholar 

  28. Kotova, E. A., Kuzevanov, A. V., Pashkovskaya, A. A., and Antonenko, Y. N. (2011) Selective permeabilization of lipid membranes by photodynamic action via formation of hydrophobic defects or pre-pores, Biochim. Biophys. Acta, 1808, 2252–2257.

    Article  CAS  PubMed  Google Scholar 

  29. Ytzhak, S., and Ehrenberg, B. (2014) The effect of photodynamic action on leakage of ions through liposomal membranes that contain oxidatively modified lipids, Photochem. Photobiol., 90, 796–800.

    CAS  PubMed  Google Scholar 

  30. Kuznetsova, N. A., Gretsova, N. S., Derkacheva, V. M., Kaliya, O. L., and Lukyanets, E. A. (2003) Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solutions, J. Porphyr. Phthalocyanines, 7, 147–154.

    Article  CAS  Google Scholar 

  31. Zorin, V., Michalovsky, I., Zorina, T., and Khludeyev, I. (1996) The distribution of chlorin e6 derivatives in biological systems — investigation of pH-effect, Proc. SPIE, 2625, 146–155.

    CAS  Google Scholar 

  32. Vilensky, A., and Feitelson, J. (1999) Reactivity of singlet oxygen with tryptophan residues and with melittin in liposome systems, Photochem. Photobiol., 70, 841–846.

    Article  CAS  PubMed  Google Scholar 

  33. Sokolov, V. S., Block, M., Stozhkova, I. N., and Pohl, P. (2000) Membrane photopotential generation by interfacial differences in the turnover of a photodynamic reaction, Biophys. J., 79, 2121–2131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sokolov, V. S., and Pohl, P. (2009) Membrane transport of singlet oxygen monitored by dipole potential measurements, Biophys. J., 96, 77–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Krasnovsky, A. A., Kagan, V. E., and Minin, A. A. (1983) Quenching of singlet oxygen luminescence by fatty acids and lipids - contribution of physical and chemical mechanisms, FEBS Lett., 155, 233–236.

    Article  Google Scholar 

  36. Bamberg, E., and Lauger, P. (1973) Channel formation kinetics of gramicidin A in lipid bilayer membranes, J. Membr. Biol., 11, 177–194.

    Article  CAS  PubMed  Google Scholar 

  37. Nagle, J. F., and Tristram-Nagle, S. (2000) Structure of lipid bilayers, Biochim. Biophys. Acta, 1469, 159–195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rose, R. C. (1987) Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation, Biochim. Biophys. Acta, 924, 254–256.

    Article  CAS  PubMed  Google Scholar 

  39. Moan, J., and Berg, K. (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  40. Krasnovsky, A. A., Jr. (2006) Photodynamic regulation of biological processes: primary mechanisms, in Problems of Regulation in Biological Systems (Rubin, A. B., ed.) Moscow-Izhevsk.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Rokitskaya.

Additional information

Original Russian Text © T. I. Rokitskaya, A. M. Firsov, E. A. Kotova, Y. N. Antonenko, 2015, published in Biokhimiya, 2015, Vol. 80, No. 6, pp. 882–890.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokitskaya, T.I., Firsov, A.M., Kotova, E.A. et al. Photodynamic inactivation of gramicidin channels in bilayer lipid membranes: Protective efficacy of singlet oxygen quenchers depends on photosensitizer location. Biochemistry Moscow 80, 745–751 (2015). https://doi.org/10.1134/S0006297915060097

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915060097

Key words

Navigation