Skip to main content
Log in

Key genes in the phenylpropanoids biosynthesis pathway have different expression patterns under various abiotic stresses in the Iranian red and green cultivars of sweet basil (Ocimum basilicum L.)

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Phenylpropanoids are a large and important family of plant secondary metabolites. The biosynthetic pathway of phenylpropanoids is induced in plants under environmental stresses to cope with these harmful conditions. In the present study, for the first time, we identified and characterized one reference gene (ACTIN) and three key biosynthetic genes (4CL, C4H and CVOMT) in the Iranian red and green cultivars of sweet basil. Also, the expression patterns of 4CL, C4H and CVOMT biosynthetic genes were determined for the first time in the Iranian red and green cultivars of sweet basil under cold, drought, heat, light and salt stresses. The results showed that the ACTIN, 4CL, C4H and CVOMT genes identified in the Iranian cultivars are identical to other cultivars in terms of all characteristics such as ORF length, protein sequence length, molecular weight, functional domains, lack of signal peptide, subcellular localization site, and secondary structures. Our results also revealed that the 4CL, C4H and CVOMT biosynthetic genes have different expression in the Iranian red and green cultivars of sweet basil under abiotic stresses and their expression patterns are cultivar dependent. The findings of this study can advance our knowledge of phenylpropanoids biosynthesis in plants under environmental stresses. These findings also can be used in plant breeding programs for stress tolerance in sweet basil and other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16(11):3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JR, Zein I, Wenzel G, Darnhofer B, Eder J, Ouzunova M, Lübberstedt T (2008) Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds. BMC Plant Biol 8(1):2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batard Y, Schalk M, Pierrel M-A, Zimmerlin A, Durst F, Werck-Reichhart D (1997) Regulation of the cinnamate 4-hydroxylase (CYP73A1) in Jerusalem artichoke tubers in response to wounding and chemical treatments. Plant Physiol 113(3):951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatovic D, Krstic-Milosevic D, Trifunovic S, Siljegovic J, Glamoclija J, Ristic M, Jelacic S (2015) Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec Nat Prod 9(1):62

    Google Scholar 

  • Belhassen E (1997) Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, New York

    Book  Google Scholar 

  • Bellés JM, López-Gresa MP, Fayos J, Pallás V, Rodrigo I, Conejero V (2008) Induction of cinnamate 4-hydroxylase and phenylpropanoids in virus-infected cucumber and melon plants. Plant Sci 174(5):524–533

    Article  CAS  Google Scholar 

  • Bilal A, Jahan N, Ahmed A, Bilal SN, Habib S, Hajra S (2012) Phytochemical and pharmacological studies on Ocimum basilicum Linn-A review. Int J Curr Res Rev 4(23):73–83

  • Chang X, Alderson P, Wright C (2005) Effect of temperature integration on the growth and volatile oil content of basil (Ocimum basilicum L.). J Hortic Sci Biotechnol 80(5):593–598

    Article  CAS  Google Scholar 

  • Chen A-H, Chai Y-R, Li J-N, Chen L (2007) Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). BMB Rep 40(2):247–260

    Article  CAS  Google Scholar 

  • Deng Y, Lu S (2017) Biosynthesis and regulation of phenylpropanoids in plants. Crit Rev Plant Sci 36(4):257–290

    Article  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 9(40):169–186

  • Douglas CJ, Ehlting J, Harding SA, Joshi C, DiFazio S, Kole C (2011) Phenylpropanoid and phenolic metabolism in Populus: gene family structure and comparative and functional genomics. Genetics, genomics and breeding of poplars Enfield, NH. Science Publishers, pp 304–326

  • Escobar AL, de Oliveira Silva FM, Acevedo P, Nunes-Nesi A, Alberdi M, Reyes-Díaz M (2017) Different levels of UV-B resistance in Vaccinium corymbosum cultivars reveal distinct backgrounds of phenylpropanoid metabolites. Plant Physiol Biochem 118:541–550

    Article  CAS  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Frank MR, Deyneka JM, Schuler MA (1996) Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol 110(3):1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E (2002) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14(2):505–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Calderón M, Pons-Ferrer T, Mrazova A, Pal’ove-Balang P, Vilkova M, Pérez-Delgado CM, Vega JM, Eliašová A, Repčák M, Márquez AJ (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Springer, New York

    Book  Google Scholar 

  • Grayer RJ, Kite GC, Goldstone FJ, Bryan SE, Paton A, Putievsky E (1996) Infraspecific taxonomy and essential oil chemotypes in sweet basil, Ocimum Basilicum. Phytochemistry 43(5):1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Gunning PW, Ghoshdastider U, Whitaker S, Popp D, Robinson RC (2015) The evolution of compositionally and functionally distinct actin filaments. J Cell Sci 128(11):2009–2019

    Article  CAS  PubMed  Google Scholar 

  • Hamberger B, Hahlbrock K (2004) The 4-coumarate: CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci 101(7):2209–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam E (2014) The shikimate pathway: biosynthesis of natural products series. Elsevier, Amsterdam

    Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Biol 50(1):473–503

    Article  CAS  Google Scholar 

  • Hu W-J, Kawaoka A, Tsai C-J, Lung J, Osakabe K, Ebinuma H, Chiang VL (1998) Compartmentalized expression of two structurally and functionally distinct 4-coumarate: CoA ligase genes in aspen (Populus tremuloides). Proc Natl Acad Sci 95(9):5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Ullah F, Zhou D-X, Yi M, Zhao Y (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10:1–10

  • Jenks MA, Hasegawa PM (2005) Plant abiotic stress. Wiley Online Library, New York

    Book  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 1:36(Web Server issue) W5-W9

  • Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi RK (2014) Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc Sci Life 33(3):151–156

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khair-ul-Bariyah S, Ahmed D, Ikram M (2012) Ocimum basilicum: a review on phytochemical and pharmacological studies. Pak J Chem 2(2):78–85

    Article  Google Scholar 

  • Khakdan F, Nasiri J, Ranjbar M, Alizadeh H (2017) Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil. J Plant Physiol 218:74–83

    Article  CAS  PubMed  Google Scholar 

  • Khakdan F, Alizadeh H, Ranjbar M (2018) Molecular cloning, functional characterization and expression of a drought inducible phenylalanine ammonia-lyase gene (ObPAL) from Ocimum basilicum L. Plant Physiol Biochem 130:464–472

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Choi B, Natarajan S, Bae H (2013) Expression analysis of kenaf cinnamate 4-hydroxylase (C4H) ortholog during developmental and stress responses. Plant Omics 6(1):65–72

  • Kim YS, Kim YB, Kim Y, Lee MY, Park SU (2014) Overexpression of cinnamate 4-hydroxylase and 4-coumaroyl CoA ligase prompted flavone accumulation in Scutellaria baicalensis hairy roots. Nat Prod Commun 9(6):803–807

  • Koopmann E, Logemann E, Hahlbrock K (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol 119(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkina L (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol Biol 53(1):15–25

    CAS  PubMed  Google Scholar 

  • Lavhale SG, Kalunke RM, Giri AP (2018) Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. Planta 248(5):1063–1078

    Article  CAS  PubMed  Google Scholar 

  • Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J (2015) Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 5:17749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kim JK, Park SU (2019) Molecular cloning and characterization of rosmarinic acid biosynthetic genes and rosmarinic acid accumulation in Ocimum basilicum L. Saudi J Biol Sci 26(3):469–472

    Article  PubMed  CAS  Google Scholar 

  • Lim TK (2012) Edible medicinal and non-medicinal plants, vol 1. Springer, New York

    Book  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

  • Mandoulakani BA, Eyvazpour E, Ghadimzadeh M (2017) The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry 139:1–7

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI (2014) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D1):D222–D226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    Article  CAS  PubMed  Google Scholar 

  • Meek CR, Bidlack JE (2015) Arthropod population, phenylalanine ammonia lyase activity, and fresh weight of sweet basil (Ocimum basilicum) as affected by plant age and Bacillus thuringiensis treatment. Proc Okla Acad Sci. 85: pp 9–17 

  • Miraj S, Kiani S (2016) Study of pharmacological effect of Ocimum basilicum: a review. Pharm Lett 8(9):276–280

    CAS  Google Scholar 

  • Moura JC, Bonine CA, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Biores Technol 101(1):372–378

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kännaste A, Copolovici L (2013) Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front Plant Sci 4:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Park NI, Park JH, Park SU (2012) Overexpression of cinnamate 4-hydroxylase gene enhances biosynthesis of decursinol angelate in Angelica gigas hairy roots. Mol Biotechnol 50(2):114–120

    Article  CAS  PubMed  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123

    Article  PubMed  PubMed Central  Google Scholar 

  • Perin EC, da Silva MR, Borowski JM, Crizel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 271:516–526

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Pinasseau L, Vallverdú-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Péros J-P, Ageorges A, Sommerer N, Boulet J-C (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:1826

    Article  PubMed  PubMed Central  Google Scholar 

  • Purushothaman B, PrasannaSrinivasan R, Suganthi P, Ranganathan B, Gimbun J, Shanmugam K (2018) A comprehensive review on Ocimum basilicum. J Nat Remedies 18(3):71–85

    Article  Google Scholar 

  • Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A, Dwivedi UN, Shasany AK (2019) Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity. PLoS ONE 14(2):e0210903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci 102(46):16573–16578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaie R, Mandoulakani BA, Fattahi M (2020) Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Sci Rep 10(1):1–10

    Article  CAS  Google Scholar 

  • Rossi L, Borghi M, Francini A, Lin X, Xie D-Y, Sebastiani L (2016) Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8–15

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi M, Dehghan S, Fischer R, Wenzel U, Vilcinskas A, Kavousi HR, Rahnamaeian M (2013) Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius. Plant Signal Behav 8(11):e27335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1(6):168–182

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  PubMed Central  Google Scholar 

  • Silva RRd, da Câmara CA, Almeida AV, Ramos CS (2012) Biotic and abiotic stress-induced phenylpropanoids in leaves of the mango (Mangifera indica L., Anacardiaceae). J Braz Chem Soc 23(2):206–211

    Google Scholar 

  • Simon JE, Quinn J, Murray RG (1990) Basil: a source of essential oils. Adv New Crops:484–489

  • Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19(3):257–268

    Article  CAS  Google Scholar 

  • Soltani BM, Ehlting J, Hamberger B, Douglas CJ (2006) Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. Planta 224(5):1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Swedan E (2013) PAL gene activity and total phenolic compounds in some members of lamiaceae. J Appl Sci Res 9(2):1222–1227

    CAS  Google Scholar 

  • Tahsili J, Sharifi M, Behmanesh M, Pourbozorgi-Rudsari N, Ziaei M (2012) Expression of 4 genes in Ocimum basilicum and their relationship with phenylpropanoids content

  • Wang C-H, Yu J, Cai Y-X, Zhu P-P, Liu C-Y, Zhao A-C, Lü R-H, Li M-J, Xu F-X, Yu M-D (2016) Characterization and functional analysis of 4-coumarate: CoA ligase genes in mulberry. PLoS ONE 11(5):e0155814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Shan T, Xie B, Ling C, Shao S, Jin P, Zheng Y (2019) Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem 272:530–538

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107(1):142–149

    Article  CAS  Google Scholar 

  • Van Wyk B-E, Wink M (2018) Medicinal plants of the world. CABI

  • Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Percival Zhang YH, Dixon RA, Zhao B (2011) Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192(3):611–625

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P, Shi W, Doeppke C, Sykes RW, Burris JN, Bozell JJ, Zong-Ming Cheng M, Hayes DG, Labbe N, Davis M, Stewart Jr CN, Yuan JS (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics, 10, S3

  • Yang L, Wang C, Guo W, Li X, Lu M, Yu C (2006) Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Russ J Plant Physiol 53(3):390–395

    Article  CAS  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol 49(2):226–241

    Article  CAS  PubMed  Google Scholar 

  • Yu C-S, Cheng C-W, Su W-C, Chang K-C, Huang S-W, Hwang J-K, Lu C-H (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 9(6):e99368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mir Drikvand.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised as affiliations of third, fourth authors were published incorrectly and corrected in this version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahivand, M., Drikvand, R.M., Gomarian, M. et al. Key genes in the phenylpropanoids biosynthesis pathway have different expression patterns under various abiotic stresses in the Iranian red and green cultivars of sweet basil (Ocimum basilicum L.). Plant Biotechnol Rep 15, 585–594 (2021). https://doi.org/10.1007/s11816-021-00697-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00697-y

Keywords

Navigation