Skip to main content
Log in

Rubi-colored crops with built-in ketocarotenoid biosynthetic pathway

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Ketocarotenoid–biofortified crops are required as natural additives with respect to their Rubi-like reddish color and strong antioxidative properties for foods and feeds. They can be an alternative means of microalgal and bacterial systems and do not depend on chemical synthesis, providing safe, sustainable, and processing-free platforms. To reach sufficient commercial demands, different metabolic engineering strategies have been used in diverse crop plants. In this study, we summarized the current achievements for de novo production of ketocarotenoids in major crops and described host crop-specific tactics to optimize the ketocarotenoid biosynthetic pathway, considering the following different levels and types of carotenoid being accumulated as precursors: lutein and zeaxanthin in maize seeds; lutein in rice seeds, canola seeds, soybean seeds, and tobacco flowers; zeaxanthin in potato tubers; β–carotene in carrot roots; and lycopene in tomato fruits. This study suggests prospects for the advanced performance of ketocarotenoid biofortification in crops in two crucial points: host crop cultivar and the elaborately designed genetic strategies. The latter includes an increase in the total carotenoid capacity by co-consideration to supply precursors and stabilizers, the prevention of metabolite loss in competing or catabolic pathways or both pathways, and the sensible choice of genes and genetic elements for optimal expression. Furthermore, progresses in synthetic biology and new biotechnology, such as genome editing, could accelerate the development of high-valued “Rubi Crops,” which satisfy the nutritional and functional needs of humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn M-J, Noh SA, Ha S-H, Back K, Lee SW, Bae JM (2012) Production of ketocarotenoids in transgenic carrot plants with an enhanced level of β-carotene. Plant Biotechnol Rep 6:133–140

    Article  Google Scholar 

  • Bai C, Rivera SM, Medina V, Alves R, Vilaprinyo E, Sorribas A, Canela R, Capell T, Sandmann G, Christou P, Zhu C (2014) An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation. Plant J 77:464–475

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, Zhu C (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor–product balance. Plant Biotechnol J 14:195–205

    Article  CAS  PubMed  Google Scholar 

  • Bai C, Berman J, Farre G, Capell T, Sandmann G, Christou P, Zhu C (2017) Reconstruction of the astaxanthin biosynthesis pathway in rice endosperm reveals a metabolic bottleneck at the level of endogenous β-carotene hydroxylase activity. Transgenic Res 26:13–23

    Article  CAS  PubMed  Google Scholar 

  • Breitenbach J, Bai C, Rivera SM, Canela R, Capell T, Christou P, Zhu C, Sandmann G (2014) A novel carotenoid, 4-keto-α-carotene, as an unexpected by-product during genetic engineering of carotenogenesis in rice callus. Phytochemistry 98:85–91

    Article  CAS  PubMed  Google Scholar 

  • Campbell R, Morris WL, Mortimer CL, Misawa N, Ducreux LJM, Morris JA, Hedley PE, Fraser PD, Taylor MA (2015) Optimising ketocarotenoid production in potato tubers: effect of genetic background, transgene combinations and environment. Plant Sci 234:27–37

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Luo H, Yuan H, Eissa MA, Thannhauser TW, Welsch R, Hao Y, Cheng L, Li L (2019) A neighboring aromatic-aromatic amino acid combination governs activity divergence between tomato phytoene synthases. Plant Physiol 180:1988–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capelli B, Bagchi D, Cysewski G (2013) Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 12:145–152

    Article  CAS  Google Scholar 

  • Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ, Gruis DF, Obukosia S, Wambugu F, Albertsen MC (2016) Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proc Natl Acad Sci USA 113:11040–11045

    Article  CAS  PubMed  Google Scholar 

  • Chien Y, Shiau W (2005) The effects of dietary supplementation of algae and synthetic astaxanthin on body astaxanthin, survival, growth, and low dissolved oxygen stress resistance of kuruma prawn, Marsupenaeus japonicus Bate. J Exp Mar Biol Ecol 318:201–211

    Article  CAS  Google Scholar 

  • Cunningham F, Gantt E (2011) (2011) Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 23:3055–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo A, Saika H, Takemura M, Misawa N, Toki S (2019) A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice 12:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Enfissi EMA, Nogueira M, D’Ambrosio C, Stigliani AL, Giorio G, Misawa N, Fraser PD (2019) The road to astaxanthin production in tomato fruit reveals plastid and metabolic adaptation resulting in an unintended high lycopene genotype with delayed over-ripening properties. Plant Biotechnol J 17:1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61:1600469

    Article  Google Scholar 

  • Fang N, Wang C, Liu X, Zhao X, Liu Y, Liu X, Du Y, Zhang Z, Zhang H (2019) De novo synthesis of astaxanthin: from organisms to genes. Trends Food Sci Technol 92:162–171

    Article  CAS  Google Scholar 

  • Farré G, Maiam Rivera S, Alves R, Vilaprinyo E, Sorribas A, Canela R, Naqvi S, Sandmann G, Capell T, Zhu C, Christou P (2013) Targeted transcriptomic and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that may be addressed by multigene engineering. Plant J 75:441–455

    Article  PubMed  Google Scholar 

  • Farré G, Perez-Fons L, Decourcelle M, Breitenbach J, Hem S, Zhu C, Capell T, Christou P, Fraser P, Sandmann G (2016) Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Res 25:477–489

    Article  PubMed  Google Scholar 

  • Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Sandmann G (2006) Ketocarotenoid formation in transgenic potato. J Exp Bot 57:3639–3645

    Article  CAS  PubMed  Google Scholar 

  • Gerjets T, Sandmann M, Zhu C, Sandmann G (2007) Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol J 2:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol 44:169–180

    Article  CAS  PubMed  Google Scholar 

  • Ha S-H, Liang YS, Jung H, Ahn M-J, Suh S-C, Kweon S-J, Kim D-H, Kim Y-M, Kim J-K (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8:928–938

    Article  CAS  PubMed  Google Scholar 

  • Ha S-H, Kim JK, Jeong YS, You MK, Lim S-H, Kim J-K (2019) Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm. Metab Eng 52:178–189

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, Choi S, Misawa N, Miyake C (2008) Biosynthesis of astaxantyehin in tobacco leaves by transplastomic engineering. Plant J 55:857–868

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhong Y, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2019) Global status of commercialized biotech/GM crops in 2019. brief’s series 55

  • Jayaraj J, Jayaraj J, Devlin R, Devlin R, Punja Z, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Ku H-K, Jung Y-J, Jung J-J, Kim JK, Lee KB, Kim J-K, Lim S-H, Lee D, Ha S-H (2021) 2A-linked bi-, tri-, and quad-cistrons for the stepwise biosynthesis of β-carotene, zeaxanthin, and ketocarotenoids in rice endosperm. Metab Eng Commun 12:e00166

    Article  PubMed  PubMed Central  Google Scholar 

  • Liyanaarachchi VC, Nishshanka GKSH, Premaratne RGMM, Ariyadasa TU, Nimarshana PHV, Malik A (2020) Astaxanthin accumulation in the green microalga Haematococcus pluvialis: effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnol Rep 28:e00538

    Article  Google Scholar 

  • Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892

    Article  CAS  PubMed  Google Scholar 

  • Moreno JA, Díaz-Gómez J, Fuentes-Font L, Angulo E, Gosálvez LF, Sandmann G, Portero-Otin M, Capell T, Zhu C, Christou P, Nogareda C (2020) Poultry diets containing (keto)carotenoid-enriched maize improve egg yolk color and maintain quality. Anim Feed Sci Technol 260:114334

    Article  CAS  Google Scholar 

  • Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA (2006) Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263

    Article  CAS  PubMed  Google Scholar 

  • Nogueira M, Enfissi EMA, Valenzuela MEM, Menard GN, Driller RL, Eastmond PJ, Schuch W, Sandmann G, Fraser PD (2017) Engineering of tomato for the sustainable production of ketocarotenoids and its evaluation in aquaculture feed. Proc Natl Acad Sci USA 114:10876–10881

    Article  CAS  PubMed  Google Scholar 

  • Osorio CE (2019) The role of orange gene in carotenoid accumulation: manipulating chromoplasts toward a colored future. Front Plant Sci 10:1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Panis G, Carreon JR (2016) Commercial astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Algal Res 18:175–190

    Article  Google Scholar 

  • Pierce EC, LaFayette PR, Ortega MA, Joyce BL, Kopsell DA, Parrott WA (2015) Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS ONE 10:0138196

    Article  Google Scholar 

  • Ralley L, Enfissi EMA, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39:477–486

    Article  CAS  PubMed  Google Scholar 

  • Rebelo BA, Farrona S, Ventura MR, Abranches R (2020) Canthaxanthin, a red-hot carotenoid: applications, synthesis, and biosynthetic evolution. Plants 9:1039

    Article  CAS  PubMed Central  Google Scholar 

  • Rosa AP, Scher A, Sorbara JOB, Boemo LS, Forgiarini J, Londero A (2012) Effects of canthaxanthin on the productive and reproductive performance of broiler breeders. Poult Sci 91:660–666

    Article  CAS  PubMed  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  CAS  PubMed  Google Scholar 

  • Si X, Zhang H, Wang Y, Chen K, Gao C (2020) Manipulating gene translation in plants by CRISPR–Cas9-mediated genome editing of upstream open reading frames. Nat Protoc 15:338–363

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Wang B, Peng R, Xu J, Li T, Fu X, Xiong A, Gao J, Yao Q (2019) Enhancing carotenoid biosynthesis in rice endosperm by metabolic engineering. Plant Biotechnol J 17:849–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran NT, Kaldenhoff R (2020) Metabolic engineering of ketocarotenoids biosynthetic pathway in Chlamydomonas reinhardtii strain CC-4102. Sci Rep 10:10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You MK, Lee YJ, Kim JK, Baek SA, Jeon YA, Lim SH, Ha S-H (2020) The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds. BMC Plant Biol 20:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Peng J, Yin K, Wang J (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, Wang D, Gao C (2018) Genome editing of upstream open reading frames enables translational control in plants. Nat Biotechnol 36:894–898

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Giuliano G, Al-Babili S (2020) Carotenoid biofortification in crop plants: citius, altius, fortius. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158664

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Capell T, Christou P (2009) Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch Biochem Biophys 483:182–190

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zeng D, Yu S, Cui C, Li J, Li H, Chen J, Zhang R, Zhao X, Chen L, Liu Y (2018) From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm. Mol Plant 11:1440–1448

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Wang B, Tan J, Liu T, Li L, Liu Y (2020) Plant synthetic metabolic engineering for enhancing crop nutritional quality. Plant Commun 1:100017

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by BioGreen21 Agri-Tech Innovation Program (PJ01567101 to S.-H. Ha) and the Next Generation New Plant Breed Technology Program (PJ01477202 to S.-H. Ha) funded by the Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

YSJ and H-KK drafted the manuscript with J-YL; S-HH envisaged and revised the paper with DL. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Dongho Lee or Sun-Hwa Ha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.S., Ku, HK., Lee, JY. et al. Rubi-colored crops with built-in ketocarotenoid biosynthetic pathway. Plant Biotechnol Rep 15, 125–138 (2021). https://doi.org/10.1007/s11816-021-00673-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-021-00673-6

Keywords

Navigation