Skip to main content
Log in

Sugarcane ORF finder: the web-application for mining genes from sugarcane genome

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Sugarcane is one of the most important multi-purpose crops that are native to tropical regions. As commercial sugarcane is an interspecific hybrid between Saccharum officianarum and Saccharum spontaneum, the genome size of sugarcane has been reported around 10 Gbase. From this reason, it has been hard to build the reference level assembly resulting in partial contigs. With the advance of third generation sequencers and assembly strategies, recently, two sugarcane genome assemblies were published representing monoploidy of sugarcane cultivar and whole genome of S. spontaneum. Synergetically, the genome-editing technology is advanced that can eventually facilitate the sugarcane breeding and the necessity of utilizing genome sequence is also arising for sugarcane researchers to find guide-RNA binding site by the machine learning algorithms or human inspection. Here, we built web-application for the researchers to find the open reading frame (ORF) of sugarcane genes easily with a query gene ID and catalog candidate gene list by query sentences (http://pgl.gnu.ac.kr/sugarcane_orf_finder/). This enables the researchers to find their genes of interest and directly observe the ORF structure of the query gene and design precise guide RNA for genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buels R, Yao E, Diesh CM et al (2016) JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol 17:66

    Article  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformat 10:421

    Article  Google Scholar 

  • Cock PJA, Antao T, Chang JT et al (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25:1422–1423

    Article  CAS  Google Scholar 

  • Crystian D, dos Santos JM, de S Barbosa GV, Almeida C (2018) Genetic diversity trends in sugarcane germplasm: analysis in the germplasm bank of the RB varieties. Crop Breed Appl Biotechnol 18:426–431

    Article  CAS  Google Scholar 

  • Deren CW (1995) Genetic base of US mainland sugarcane. Crop Sci 35:1195–1199

    Article  Google Scholar 

  • Devlin J, Chang M-W, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv [cs.CL]

  • Edmé SJ, Miller JD, Glaz B et al (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci 45:92–97

    Google Scholar 

  • Garside AL, Bell MJ, Robotham BG et al (2005) Managing yield decline in sugarcane cropping systems. Int Sugar J 107:16–26

    Google Scholar 

  • Garsmeur O, Droc G, Antonise R et al (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638

    Article  Google Scholar 

  • Hoang NV, Furtado A, Botha FC et al (2015) Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol 3:182

    Article  Google Scholar 

  • Kang YJ, Lee T, Lee J et al (2016) Translational genomics for plant breeding with the genome sequence explosion. Plant Biotechnol J 14:1057–1069

    Article  CAS  Google Scholar 

  • Kim C, Wang X, Lee T-H et al (2014) Comparative analysis of Miscanthus and Saccharum reveals a shared whole-genome duplication but different evolutionary fates. Plant Cell 26:2420–2429

    Article  CAS  Google Scholar 

  • Linnenluecke MK, Nucifora N, Thompson N (2018) Implications of climate change for the sugarcane industry. Wiley Interdiscip Rev Clim Change 9:e498

    Article  Google Scholar 

  • Nadkarni PM, Ohno-Machado L, Chapman WW (2011) Natural language processing: an introduction. J Am Med Inform Assoc 18:544–551

    Article  Google Scholar 

  • Paterson AH, Wang X, Li J, Tang H (2012) Ancient and recent polyploidy in monocots. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, pp 93–108

    Chapter  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Roach BT (1972) Nobilisation of sugarcane. In: Proc Int Soc Sugar Cane Technol. issct.org, pp 206–216

  • Stein LD (2013) Using GBrowse 2.0 to visualize and share next-generation sequence data. Brief Bioinform 14:162–171

    Article  CAS  Google Scholar 

  • Talukdar D, Verma DK, Malik K et al (2017) Sugarcane as a potential biofuel crop. In: Mohan C (ed) Sugarcane biotechnology: challenges and prospects. Springer International Publishing, Cham, pp 123–137

    Chapter  Google Scholar 

  • Thirugnanasambandam PP, Hoang NV, Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:616

    Article  Google Scholar 

  • UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  Google Scholar 

  • Waskom M, Botvinnik O, O’Kane D, et al (2018) mwaskom/seaborn: v0.9.0 (July 2018)

  • Wu Y, Schuster M, Chen Z, et al (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv [cs.CL]

  • Zhang J, Nagai C, Yu Q et al (2012) Genome size variation in three Saccharum species. Euphytica 185:511–519

    Article  CAS  Google Scholar 

  • Zhang J, Zhang X, Tang H et al (2018a) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50:1565–1573

    Article  CAS  Google Scholar 

  • Zhang Y, Massel K, Godwin ID, Gao C (2018b) Applications and potential of genome editing in crop improvement. Genome Biol 19:210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for National Agricultural Genome Program (Project No. PJ01347303)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Jae Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y.J. Sugarcane ORF finder: the web-application for mining genes from sugarcane genome. Plant Biotechnol Rep 13, 553–558 (2019). https://doi.org/10.1007/s11816-019-00574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00574-9

Navigation