Skip to main content
Log in

An efficient and rapid Rhizobium rhizogenes root transformation protocol for Lemna minor

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Duckweeds belong to the smallest aquatic flowering plant family, Lemnaceae, and have a rapid doubling time, making this group an excellent system to study reduced morphology and wide environmental adaptability at the molecular level. Despite the availability of genomic and transcriptomic data for duckweed member, Lemna minor, lack of an efficient genetic transformation system has limited its use in plant molecular biology research. The present study reports an efficient and rapid Rhizobium rhizogenes-mediated root transformation system for L. minor. Two different factorial experiments were designed to test the effect of explant type, age, culture media and inoculation methods on transformation efficiency. Leaf and root tip cut explants were inoculated with R. rhizogenes strain MSU 440 harboring pBIN-YFP vector using yellow fluorescent protein (YFP) as a reporter gene for identification of transgenic roots. In addition, two different culture media, full MS and 0.25X Hoagland, and four different infection methods, solid culture, centrifugation, liquid culture and sonication, were compared. After 8 weeks, about 17% of the root tip-cut explants infected via the solid culture method and maintained in 0.25X Hoagland medium had YFP-expressing roots. These transgenic L. minor roots were morphologically similar to normal roots and PCR analysis demonstrated that the YFP-expressing roots were positive for the integration-expected rol genes. The described optimized root transformation procedure is a valuable tool for pursuing high-throughput gene characterization studies in L. minor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Appenroth KJ (2015) International steering committee on duckweed research and applications, useful methods 2: sterilization of duckweed. 3:90–138

  • Appenroth K, Adamec L (2014) Specific turion yields of different clones of Spirodela polyrhiza depend on external phosphate thresholds. Plant Biol 17:125–129

    Article  PubMed  CAS  Google Scholar 

  • Bandaranayake PCG, Yoder JI (2013) Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant. Mol Plant Microbe Interact 26:575–584

    Article  CAS  PubMed  Google Scholar 

  • Bandaranayake PCG, Yoder JI (2018) Factors affecting the efficiency of Rhizobium rhizogenes root transformation of the root parasitic plant Triphysaria versicolor and its host Arabidopsis thaliana. Plant Methods 14(1):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bandaranayake PCG, Filappova T, Tomilov A, Tomilova NB, Jamison-McClung D, Ngo Q, Inoue K, Yoder JI (2010) A single-electron reducing quinoneoxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22:1404–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12(22):8711–8721. https://doi.org/10.1093/nar/12.22.8711

    Article  CAS  PubMed  Google Scholar 

  • Bowker D, Duffield A, Denny P (1980) Methods for the isolation, sterilization and cultivation of Lemnaceae. Freshw Biol 10(4):385–388

    Article  Google Scholar 

  • Caicedo JR, van der Steennp NP, Arce O, Gijzen HJ (2000) Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodelapolyrrhiza). Water Res 34:3829–3835

    Article  CAS  Google Scholar 

  • Cao HX, Vu GTH, Wang W, Messing J, Schubert I (2015) Chromatin organisation in duckweed interphase nuclei in relation to the nuclear DNA content. Plant Biol 17:120–124

    Article  CAS  PubMed  Google Scholar 

  • Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol Mol Biol Plants 17:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Delbart FC, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Díaz-Camino E, Santana O, Murillo E, Guillén G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff PM, Sánchez F (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp. A tool for functional genomics. Mol Plant Microbe Interact 19:1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM (2007) Ammonium and nitrate uptake by the floating plant Landoltia punctate. Ann Bot 99:365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finer JJ, Trick HN (1997) Method for transforming plant tissue by sonication. U.S. Patent No. 5,693,512, 2 Dec 1997. U.S. Patent and Trademark Office, Washington, DC

  • Heide VDT, Roijackers RMM, Nes VEH, Peeters ETHM (2006) A simple equation for describing the temperature dependent growth of free-floating macrophytes. Aquat Bot 84:171–175

    Article  Google Scholar 

  • Horemans N, Van Hee M, Van Hoeck A, Saenen E, De Meutter T, Nauts R, Blust R, Vandenhove H (2015) Uranium and cadmium provoke different oxidative stress responses in Lemna minor. L Plant Biol 17:91–100

    Article  CAS  PubMed  Google Scholar 

  • Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermumjaponicum. PLoS ONE 6:8

    Google Scholar 

  • Jenner HA, Janssen-Mommen JPM (1993) Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch Environ Contam Toxicol 25:3–11

    Article  CAS  Google Scholar 

  • Kasai M, Kanazawa A (2011) RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. Breeding Sci 61:468–479

    Article  CAS  Google Scholar 

  • Kuster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochem 68:8–18

    Article  CAS  Google Scholar 

  • Lahive E, O'Halloran J, Jansen MAK (2015) A marriage of convenience; a simple food chain comprised of Lemna minor (L.) and Gammarus pulex (L.) to study the dietary transfer of zinc. Plant Biol. 17(Suppl 1):75–81. https://doi.org/10.1111/plb.12179

    Article  CAS  PubMed  Google Scholar 

  • Landolt E, Kandeler R (1987) Biosystematics investigation in the family of duckweeds (lemnacea). The family of the Lemnacea: a monographic study 2: Zurich: VeroffGeobotInst ETH

  • Leng RA (1999) Duckweed—a tiny aquatic plant with enormous potential for agriculture and environment. FAO, Rome

    Google Scholar 

  • Li JR, Todd TC, Lee J, Trick HN (2011) Biotechnological application of functional genomics towards plant-parasitic nematode control. Plant Biotech J 9:936–944

    Article  CAS  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicagotruncatula. J Exp Bot 55:983–992

    Article  CAS  PubMed  Google Scholar 

  • Lonoce CR, Salem C, Marusic PV, Jutras A, Scaloni AM, Salzano S, Lucretti H, Steinkellner E, Benvenuto Donini M (2016) Production of a tumour-targeting antibody with a human-compatible glycosylation profile in N-benthamiana hairy root cultures. Biotechnol J 11:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68(14):1992–2003

    Article  CAS  PubMed  Google Scholar 

  • Muradov N, Fidalgo B, Gujar AC, T-Raissi A, (2010) Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): characterization of pyrolysis products. Biores Technol 21:8424–8428

    Article  CAS  Google Scholar 

  • Muranaka T, Okada M, Yomo J, Kubota S, Oyama T (2015) Characterisation of circadian rhythms of various duckweeds. Plant Biology 1:66–74

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol 15:473–496

    Article  CAS  Google Scholar 

  • Ono NN, Bandaranayake PCG, Tian L (2012) Establishment of pomegranate (Punica granatum) hairy root cultures for genetic interrogation of the hydrolyzable tannin biosynthetic pathway. Planta 236:931–941

    Article  CAS  PubMed  Google Scholar 

  • Oron G, Wildschut LR, Porath D (1985) Waste water recycling by duckweed for protein production and Effluent renovation. Water Sci Technol 17(4–5):803–817. https://doi.org/10.2166/wst.1985.0181

    Article  CAS  Google Scholar 

  • Oscarson P, Ingemarsson B, Ugglas M, Larsson CM (1988) Characteristics of NO 3 uptake in Lemna and Pisum. Plant Soil 111:203–205

    Article  CAS  Google Scholar 

  • Piqueras A, Albuquerque N, Folta KM (2010) Explants used for the generation of transgenic plants. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer Berlin Heidelberg 1(2):31–56

  • Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J (2016) Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotech J 14:1381–1393

    Article  CAS  Google Scholar 

  • Porath D, Pollock J (1982) Ammonia stripping by duckweed and its feasibility in circulating aquaculture. Aquat Bot 13:125–131

    Article  CAS  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G, Wang DX, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using agrobacterium Rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–U442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabou TT, Baya DT, Eyul’anki DM, Vasel JL (2014) Monitoring the influence of light intensity on the growth and mortality of duckweed (Lemna minor) through digital images processing. Biotechnol Agron Soc Environ 18:37–48

    CAS  Google Scholar 

  • Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Thomson EL, Dennis JJ (2013) Common Duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PloS one 8(11):e80102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thu P, Huong P, Tien V, Ham L, Khanh T (2015) Regeneration and transformation of gene encoding the Hemagglutinin antigen of the H5N1 virus in frond of duckweed (Spirodela polyrhiza L). J Agricult Stud 3(1):48

    Article  Google Scholar 

  • Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. Filaments Bioprocesses 149:275–324

    Article  CAS  Google Scholar 

  • Tomilov AA, Tomilova NB, Yoder JI (2006) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071

    Article  PubMed  CAS  Google Scholar 

  • Triplett B, Moss S, Bland J, Dowd M (2008) Induction of hairy root cultures from Gossypium hirsutum and Gossypium barbadense to produce gossypol and related compounds. Vitro Cell Dev Biol Plant 44:508–517

    Article  CAS  Google Scholar 

  • Walkerpeach CR, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells: Cointegrate and binary vector systems. Plant Molecular Biology Manual, S Gelvin, R Schilperoorteds (Dordrecht, The Netherlands: Kluwer) 1–19

    Chapter  Google Scholar 

  • Wang W, Messing J (2011) High-throughput sequencing of three Lemnoideae (Duckweeds) chloroplast genomes from total DNA. PLoS ONE 6(9):e24670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Messing J (2015) Status of Duckweed genomics and transcriptomics. Plant Biol 17:10–15

    Article  CAS  PubMed  Google Scholar 

  • Wang CT, Liu H, Gao XS, Zhang HX (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29:887–894

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Haberer G, Gundlach H, Gläßer C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winans SC (1992) 2-Way chemical signaling in Agrobacterium—plant interactions. Microbiol Rev 56:12–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto YT, Rajbhandari N, Lin X, Bergmann BENA, Nishhimura Y, Carolina N (2001) Genetic transformation of duckweed Lemnagibba andLemna minor. vitro Cell DevBiol Plant 37:349–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Denneal Jamison-McClung, Director of UC Davis Biotechnology Program for helpful comments provided for improving the manuscript. We would like to thank Dr. Bhagya Chandrasekara for her support on the molecular analysis and staff members of the Agricultural Biotechnology Center, University of Peradeniya for their support and encouragement throughout the research period.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. G. Bandaranayake.

Ethics declarations

Conflict of Interest

Both authors, R.W.M.K. Kanchanamala and P.C.G. Bandaranayake declare that no conflicts of interest exist regarding the materials included in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanchanamala, R.W.M.K., Bandaranayake, P.C.G. An efficient and rapid Rhizobium rhizogenes root transformation protocol for Lemna minor. Plant Biotechnol Rep 13, 625–633 (2019). https://doi.org/10.1007/s11816-019-00558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-019-00558-9

Keywords

Navigation