Skip to main content
Log in

Enhancement of embryo yield from isolated microspores of Brassica napus by early iron starvation

  • Short Communication
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Induction of embryogenesis in isolated microspores of Brassica napus requires stress conditions to trigger the developmental instead of the gametophytic pathway. To obtain further insight into the involvement of different ions in this process, a comparison has been made between embryo yields obtained with standard NLN-13 medium and the same medium without cobalt, copper or iron. It was confirmed that iron was essential to control embryo development, but not cobalt and copper. For the latter two ions, the concentration is probably too low to play a significant role in microspore embryogenesis. With the timing of iron application, as well as its chemical form, embryo yield could be improved or reduced. In media that exhibited iron deficiency, microspores initiated embryogenesis and the number of observed divided microspores increased 6 days after isolation. However, embryo development was not achieved. Addition of iron ions chelated with EDTA at day 3, leading to the doubling of embryo yield. Some of the putative role(s) of Fe-EDTA in the early events of embryogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Babbar SB, Gupta SC (1986) Obligatory and period specific requirement of iron for microspore embryogenesis in Datura metel anther cultures. Bot Mag Tokyo 99:225–232

    Article  CAS  Google Scholar 

  • Burnett LA, Yarrow SA, Huang B (1992) Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp. Oleifera. Plant Cell Rep 11:215–218

    CAS  PubMed  Google Scholar 

  • Ciardi J, Klee H (2001) Regulation of ethylene-mediated responses at the level of the receptor. Ann Bot 88:813–822

    Article  CAS  Google Scholar 

  • Custers JBM, Cordewener JHG, Nöllen Y, Dons HJM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271

    Article  CAS  PubMed  Google Scholar 

  • Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58

    Article  CAS  PubMed  Google Scholar 

  • Grover S, Purves WK (1976) Cobalt and plant development—Interaction with ethylene in hypocotyl growth. Plant Physiol 57:886–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberle-Bors E (1980) Interaction of activated charcoal and iron chelates in anther cultures of Nicotiana and Atropa belladonna. Z Pflanzenphysiol 99:339–347

    Article  CAS  Google Scholar 

  • Indrianto A, Heberle-Bors E, Touraev A (1999) Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Sci 143:71–79

    Article  CAS  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    Article  CAS  PubMed  Google Scholar 

  • Lau O-L, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemonnier-Le Penhuizic C, Chatelet C, Kloareg B, Potin P (2001) Carrageenan oligosaccharides enhance stress-induced microspore embryogenesis in Brassica oleracea var. italica. Plant Sci 160:1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Leroux B, Carmoy N, Giraudet D, Potin P, Larher F, Bodin M (2009) Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotechnol Rep 3:347–353

    Article  Google Scholar 

  • Li H, Devaux P (2001) Enhancement of microspore culture efficiency of recalcitrant barley genotypes. Plant Cell Rep 20:475–481

    Article  CAS  Google Scholar 

  • Nitsch C, Nitsch JP (1967) The induction of flowering in vitro in stem segments of Plumbago indica L.—I. The production of vegetative buds. Planta 72:355–370

    Article  CAS  PubMed  Google Scholar 

  • Parra-Vega V, Corral-Martinez P, Rivas-Sendra A, Segui-Simarro JM (2015) Induction of embryogenesis in Brassica napus microspores produces a callosic subintinal layer and abnormal cell walls with altered levels of callose and cellulose. Front Plant Sci 6:1018

    PubMed  PubMed Central  Google Scholar 

  • Pechan PM, Keller WA (1988) Identification of potentially embryogenic microspores in Brassica napus. Physiol Plant 74:377–384

    Article  Google Scholar 

  • Rocklin AM, Tierney DL, Kofman V, Brunhuber NM, Hoffman BM, Christoffersen RE, Reich NO, Lipscomb JD, Que L Jr (1999) Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc Natl Acad Sci U S A 96:7905–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romera FJ, Alcantara E (1994) Iron-deficiency stress responses in cucumber (Cucumis sativus L.) roots: a possible role for ethylene? Plant Physiol 105:1133–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15:561–565

    Article  CAS  PubMed  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Wojnarowiez G, Jacquard C, Devaux P, Sangwan RS, Clément C (2002) Influence of copper sulfate on anther culture in barley (Hordeum vulgare L.). Plant Sci 162:843–847

    Article  CAS  Google Scholar 

  • Wolniak SM (1980) Detection of the membrane-calcium distribution during mitosis in Haemanthus endosperm with chlorotetracycline. J Cell Biol 87:23–32

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Barlow JN, Baldwin JE, Schofield CJ (1997) Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-aminocyclopropane-1-carboxylate oxidase. Biochemistry (Mosc) 36:15999–16007

    Article  CAS  Google Scholar 

  • Zhao J-P, Simmonds DH, Newcomb W (1996) Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv. Topas. Planta 198:433–439

    Article  CAS  Google Scholar 

  • Zur I, Dubas E, Krzewska M, Waligorski P, Dziurka M, Janowiak F (2015) Hormonal requirements for effective induction of microspore embryogenesis in triticale (x Triticosecale Wittm.) anther cultures. Plant Cell Rep 34:47–62

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Conseil Régional de Bretagne through a doctoral fellowship to B. Leroux, as well as the encouraging guidance of Dr. S. Mabeau (Vegenov). Thanks are also due to N. Quéniat and D. Cloarec (Vegenov) for technical support and plant management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuelle Bodin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroux, B.J.G., Potin, P., Larher, F.R. et al. Enhancement of embryo yield from isolated microspores of Brassica napus by early iron starvation. Plant Biotechnol Rep 10, 483–486 (2016). https://doi.org/10.1007/s11816-016-0420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-016-0420-9

Keywords

Navigation