Skip to main content
Log in

Research on meiotic chromosome pairing in Roegneria sinica var. media evaluated using genomic in situ hybridization

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The analysis of chromosome pairing during meiosis is important for understanding the relationships between different genomes. To evaluate the diversity of chromosome pairing behavior in the wild species of Roegneria sinica var. media Keng with St and H genomes in Triticeae (Poaceae), differences and similarities in the meiotic chromosome pairing behaviors of the two genomes in two populations of R. sinica var. media, were analyzed using genomic in situ hybridization. Chromosome pairing at meiotic metaphase I in the two populations of R. sinica var. media mainly formed bivalents, although several univalents, trivalents and quadrivalents also occurred. Chromosome pairings occurred mainly between homologous chromosomes. However, some non-homologous pairings were observed under natural conditions. No significant differences in karyotype were found between the St and H genomes. Chromosome pairing behaviors differed between and within the two populations. Genetic variation occurred mainly within populations (94.04 %), and variation was more abundant in one population than the other. The genomes St and H differed, but there was some relationship between the two genomes. These findings suggest that homoeologous pairing of chromosomes or exchanges occurred between different genomes of the wild species in Triticeae during evolution. The findings also provide conclusive cytological evidence for genetic variation within the wild species, which forms the basis of their genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamowski EV, Pagliarini MS, Batista LAK (2000) Chromosome number and microsporogenesis in Paspalum maritimum. Braz Arch Biol Technol 3:301–305

    Article  Google Scholar 

  • Baum BR, Yen C, Yang JL (1991) Roegneria: its genetic limits and justification for its recognition. Can J Bot 69:282–294

    Article  Google Scholar 

  • Benavente E, Orellana J, Fernandez-Calvin B (1998) Comparative analysis of the meiotic effects of wheat ph1b and ph2b mutations in wheat × rye hybrids. Theor Appl Genet 96:1200–1204

    Article  Google Scholar 

  • Bento M, Pereira H, Rocheta M, Gustafson P, Viegas W, Silva M (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in Triticale. PLoS ONE 3(1):e1402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisht MS, Mukai Y (2001) Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet 102:825–832

    Article  CAS  Google Scholar 

  • Bor NL (1960) Grasses of Burrna Ceylon, India and Pakistan. Pergamon Press, London, pp 652–680

    Google Scholar 

  • Bowden WM (1965) Cytotaxonomy of the species and interspecific hybrids of the genus Agropyron in Canada and neighbouring areas. Can J Bot 43:1421–1448

    Article  Google Scholar 

  • Cai LB (1997) A taxonomical study on the genus Roegneria C. Koch from China. Acta Phytotaxon Sin 35:148–177

    Google Scholar 

  • Cai LB (2002) Geographical distribution of Roegneria C Koch in China. Acta Bot Boreal Occident Sin 22:913–923

    Google Scholar 

  • Cai X, Jones S (1997) Direct evidence for high level of autosyndetic pairing in hybrids of Thinopyrum intermedium and Th. ponticum with Triticum aestivum. Theor Appl Genet 95:568–572

    Article  Google Scholar 

  • Cao M, Sleper DA, Dong F, Jiang J (2000) Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei. Genome 43:398–403

    Article  CAS  PubMed  Google Scholar 

  • Crombach A, Hogeweg P (2007) Chromosome rearrangements and the evolution of genome structuring and adaptability. Mol Biol Evol 24:1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  PubMed  Google Scholar 

  • Dong YC, Zheng DS (2000) Wheat genetic resources in China. Chinese Agricultrual Press, Beijing, pp 149–206

    Google Scholar 

  • Dvorak J (1980) Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can J Genet Cytol 22:237–256

    Article  Google Scholar 

  • Ellneskog-Staam P, Salomon B, von Bothmer R, Anamthawat-Jonsson K (2001) Trigenomic origin of the hexaploid Psammopyrum athericum (Triticeae: Poaceae) revealed by in situ hybridization. Chromosome Res 9:243–249

    Article  CAS  PubMed  Google Scholar 

  • Falistocco E, Torricelli R, Falcinelli M (2002) Genomic relationships between Medicago murex Willd. and Medicago lesinsii E. Small. investigated by in situ hybridization. Theor Appl Genet 105:829–833

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor Appl Genet 86:141–149

    CAS  PubMed  Google Scholar 

  • Gaeta R, Pires J (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186:18–28

    Article  CAS  PubMed  Google Scholar 

  • Guo PC, Yang H-L (1987) Flora Reipublicae Popularis Sinicae, Gramineae (3), Delectis Florae Reipublicae Popularis Sinicae Agendae. Academiae Sinicae Edita 9(3):5–104 (Beijing, Science Press)

  • Guo JY, Chen JF, Qian CT, Cao QH (2004) Meiotic chromosome pairing research and genome analysis in plants. Chin Bull Bot 21:513–520

    Google Scholar 

  • Han F, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T (2003) Characterization of six wheat × Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 46:490–495

    Article  CAS  PubMed  Google Scholar 

  • Han FP, Liu B, Fedak G, Liu ZH (2004) Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock AS (1951) Manual of the grasses of the United States, 2nd edn. Revised by Chase A. Government Press, Washington, pp 230–280

  • Hou A, Peffley EB (2000) Recombinant chromosomes of advanced backcross plants between Allium cepa L. and A. fistulosum L. revealed by in situ hybridization. Theor Appl Genet 100:1190–1196

    Article  CAS  Google Scholar 

  • Jakob SS, Blattner FR (2009) Two extinct diploid progenitors were involved in allopolyploid formation in the Hordeum murinum (Poaceae: Triticeae) taxon complex. Mol Phylogenet Evol

  • Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989

    CAS  PubMed  Google Scholar 

  • Keng YL, Chen SL (1963) A revision of the genus Roegneria C. Koch of China. J Nanjing Univ 3:1–29

    Google Scholar 

  • Leitch A, Leitch I (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481

    Article  CAS  PubMed  Google Scholar 

  • Liu WX, Liu WH, Wu J, Gao AN, Li LH (2010) Analysis of genetic diversity in natural populations of Psathyrostachys huashanica Keng using microsatellite (SSR) markers. Agric Sci China 9:463–471

    Article  CAS  Google Scholar 

  • Lu BR (1995) Diversity and conservation of Triticeae genetic resources. Chin Biodivers 3(63–68):3

    Google Scholar 

  • Lu BR, Salomon B (1992) Differentiation of SY genomes in Asiatic Elymus. Hereditas 116:121–126

    Article  Google Scholar 

  • Lu BR, Salomon B, Bothmer RV (1991) Meiotic studies of the hybrids among Psetwloroegneria cognate, Elymus semicostatus and E. pendulinus (Poaeeae). Hereditas 114:117–124

    Article  Google Scholar 

  • Mukai Y (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494

    Article  CAS  PubMed  Google Scholar 

  • Nevski SA (1933) Uber das system der trib Hordeae Benth. Flora et systematica Plantae vasculares, Leningrad (2):9–32

  • Ørgaard M, Heslop-Harrison JS (1994) Investigations of genome relationships between Leymus, Psathyrostachys and Hordeum inferred by genome DNA: DNA in situ hybridization. Ann Bot 73:195–203

    Article  Google Scholar 

  • Poggio L, Confalonieri V, Comas C, Cuadrado A, Jouve N, Naranjo CA (1999) Genomic in situ hybridization (GISH) of Tripsacum dactyloides and Zea mays ssp. mays with B chromosomes. Genome 42:687–691

    Article  CAS  Google Scholar 

  • Reader SM, Abbo S, Purdie KA, King IP, Miller TE (1994) Direct labeling of plant chromosomes by rapid in situ hybridization. Trend Genet 10:265–266

    Article  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana, pp 3–14

    Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Shi JW, Gao AN, Liu JG, Li LH, Yang XM, Li XQ (2009) Morphological analysis on the diversity of Roegneria sinica var. media (Triticeae) populations. J Plant Genet Resour 10:547–552

    Google Scholar 

  • Snowdon RJ, Kohler W, Kohler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324

    Article  CAS  Google Scholar 

  • Soltis D, Soltis P, Tate J (2003) Advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  Google Scholar 

  • Stebbins G (1971) Chromosomal evolution in higher plants. Cambridge, UK: CUP 216 pp. Cytology evolution, genetics (PMBD, 185508067)

  • Sybenga J (1996) Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist? Genome 39:1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Zheng DS (1994) China crop genetic resources. China Agriculture Press, Beijing, pp 312–315

    Google Scholar 

  • Tsvelev NN (1976) Grasses of the Soviet Union. Russian Translation Series 8, Rotterdam, pp 146–299

  • Wang QX, Xiang JS, Gao AN, Yang XM, Liu WH (2010) Analysis of chromosomal structural polymorphisms in the St, P, and Y genomes of Triticeae (Poaceae). Genome 53:241–249

    Article  CAS  PubMed  Google Scholar 

  • Wang QX, Liu HT, Gao AN, Yang XM, Liu WH (2012) Intergenomic rearrangements after polyploidization of Kengyilia thoroldiana (Poaceae: Triticeae) affected by environmental factors. PLoS ONE 7:e31033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QX, Han HM, Gao AN, Yang XM, Li LH (2014) P chromosomes involved in intergenomic rearrangements of Kengyilia thoroldiana affected by the environment. J Genet 93

  • Wendel J (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Wu RL, Gallo MM, Litteu RC, Zeng ZB (2001) A general polyploid model for analyzing gene segregation in qutcrossing tetraploid species. Genetics 59:869–882

    Google Scholar 

  • Zheng Q, Li B, Mu SM, Zhou HP, Li ZS (2006) Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome 49:1109–1114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support provided by the National Natural Science Foundation of China (Project No: 30871520) and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainong Gao.

Additional information

A. Gao and J. Shi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Shi, J. & Liang, X. Research on meiotic chromosome pairing in Roegneria sinica var. media evaluated using genomic in situ hybridization. Plant Biotechnol Rep 10, 129–139 (2016). https://doi.org/10.1007/s11816-016-0393-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-016-0393-8

Keywords

Navigation