Skip to main content

Advertisement

Log in

Engineering leaf carbon metabolism to improve plant productivity

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The world population is rapidly growing and a corresponding increase in food production is needed to support this expansion. However, the increase in crop yield as a result of the Green revolution has reached a plateau. To further increase the yield potential, the upper limit of plant productivity has to be raised, which has prompted us to put more research efforts into improving the photosynthetic capacity of plants. In the last decade, some prominent advances have been made in some research categories to improve photosynthesis, including enhancement of carbon fixation by increasing ribulose-1,5-bisphosphate regeneration, efficient use of photoassimilated triose phosphates in the synthesis of photosynthetic end products such as sucrose and leaf starch, and decrease in photorespiratory loss in C3 plants by establishment of the photorespiratory bypass. Here, we summarize recent progress in this field and propose possible manipulation strategies to further improve photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bari R, Kebeish R, Kalamajka R, Rademacher T, Peterhänsel C (2004) A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J Exp Bot 55:623–630

    Article  CAS  PubMed  Google Scholar 

  • Baxter CJ, Foyer CH, Turner J, Rolfe SA, Quick WP (2003) Elevated sucrose–phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. J Exp Bot 54:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Carvalho JFC, Madgwick PJ, Powers SJ, Keys AJ, Lea PJ, Parry MA (2011) An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnol 11:111

    Article  CAS  PubMed Central  Google Scholar 

  • Cegelski L, Schaefer J (2006) NMR determination of photorespiration in intact leaves using in vivo 13CO2 labeling. J Magn Reson 178:1–10

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Lim H, Shin DH, Jeon JS, Bhoo SH, Park YI, Hahn TR (2011) Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in Arabidopsis thaliana. New Phytol 190:101–112

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Jang A, Bhoo SH, Jeon JS, Hahn TR (2012) Manipulation of triose phosphate/phosphate translocator and cytosolic fructose-1,6-bisphosphatase, the key components in photosynthetic sucrose synthesis, enhances the source capacity of transgenic Arabidopsis plants. Photosynth Res 111:261–268

    Article  CAS  PubMed  Google Scholar 

  • Conway G, Toenniessen G (1999) Feeding the world in the twenty-first century. Nature 402:C55–C58

    Article  CAS  PubMed  Google Scholar 

  • Crevillén P, Ballicora MA, Mérida A, Preiss J, Romero JM (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278:28508–28515

    Article  PubMed  Google Scholar 

  • Daie J (1993) Cytosolic fructose-1,6-bisphosphatase: a key enzyme in the sucrose biosynthetic pathway. Photosynth Res 38:5–14

    Article  CAS  PubMed  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenhut M, Kahlon S, Hasse D, Ewald R, Lieman-Hurwitz J, Ogawa T, Ruth W, Bauwe H, Kaplan A, Hagemann M (2006) The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol 142:333–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162:1780–1793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fell DA, Thomas S (1995) Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J 311:35–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  CAS  PubMed  Google Scholar 

  • Fliege R, Flügge UI, Werdan K, Heldt HW (1978) Specific transport of inorganic phosphate, 3-phosphoglycerate and triose phosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta 502:232–247

    Article  CAS  PubMed  Google Scholar 

  • Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Eckerskorn C (1989) The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8:39–46

    PubMed Central  PubMed  Google Scholar 

  • Galtier N, Foyer CH, Huber JLA, Voelker TA, Huber SC (1993) Effects of elevated sucrose–phosphate synthase activity on photosynthesis assimilate partitioning, and growth in tomato (Lycopericon escilentum var. UC82B). Plant Physiol 101:535–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galtier N, Foyer CH, Murchie E, Aldred R, Quick WP, Voelker TA, Thépenier C, Lascève G, Betsche T (1995) Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose–phosphate synthase. J Exp Bot 46:1335–1344

    Article  CAS  Google Scholar 

  • Gibson K, Park JS, Nagai Y, Hwang SK, Cho YC, Roh KH, Lee SM, Kim DH, Choi SB, Ito H, Edwards GE, Okita TW (2011) Exploiting leaf starch synthesis as a transient sink to elevate photosynthesis, plant productivity and yields. Plant Sci 181:275–281

    Article  CAS  PubMed  Google Scholar 

  • Greene TW, Chantler SE, Kahn ML, Barry GF, Preiss J, Okita TW (1996) Mutagenesis of the potato ADP glucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation. Proc Natl Acad Sci USA 93:1509–1513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haake V, Zrenner R, Sonnewald U, Stitt M (1998) A modertate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14:147–157

    Article  CAS  PubMed  Google Scholar 

  • Haake V, Geiger M, Walch-Liu P, Engels C, Zrenner R, Stitt M (1999) Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. Plant J 17:479–489

    Article  CAS  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Königer M (1997) The ‘high’ concentrations of enzymes within the chloroplast. Photosynth Res 54:5–23

    Article  CAS  Google Scholar 

  • Harrison EP, Willingham NM, Lloyd JC, Raines CA (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204:27–36

    Article  CAS  Google Scholar 

  • Harrison EP, Olcer H, Lloyd JC, Long SP, Raines CA (2001) Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity. J Exp Bot 52:1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Häusler RE, Baur B, Scharte J, Teichmann T, Eicks M, Fischer KL, Flügge UI, Schubert S, Weber A, Fischer K (2000a) Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryantheum crystallinum. Plant J 24:285–296

    Article  PubMed  Google Scholar 

  • Häusler RE, Schlieben NH, Nicolay P, Fischer K, Fischer KL, Flügge UI (2000b) Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.) I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Planta 210:371–382

    Article  PubMed  Google Scholar 

  • Häusler RE, Rademacher T, Li J, Lipka V, Fischer KL, Schubert S, Kreuzaler F, Hirsch HJ (2001) Single and double overexpression of C4-cycle genes had differential effects on the pattern of endogenous enzymes, attenuation of photorespiration and on contents of UV protectants in transgenic potato and tobacco plants. J Exp Bot 52:1785–1803

    Article  PubMed  Google Scholar 

  • Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Pray C, Rozelle S (2002) Enhancing the crops to feed the poor. Nature 418:678–684

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa Y, Taomi M, Sakuyama H, Maruta T, Ashida H, Yokota A, Shigeoka S (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM crops 1–5:322–326

    Article  Google Scholar 

  • IPCC (2007) Summary for policy makers. In: Climate change 2007: the physical science basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Solomon S, Quin D, Mannning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, UK and New York, USA

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  • Kelly G, Sade N, Attia Z, Secchi F, Zwieniecki M, Holbrook NM, Levi A, Alchanatis V, Moshelion M, Granot D (2014) Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS One 9:e87888

    Article  PubMed Central  PubMed  Google Scholar 

  • Khush G (2003) Productivity improvements in rice. Nutr Rev 61:S114–S116

    Article  PubMed  Google Scholar 

  • Kleczkowski LA (2000) Is leaf ADP-glucose pyrophosphorylase an allosteric enzyme? Biochim Biophys Acta 1476:103–108

    Article  CAS  PubMed  Google Scholar 

  • Koßmann J, Sonnewald U, Willmitzer L (1994) Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J 6:637–650

    Article  Google Scholar 

  • Lee SK, Hwang SK, Han MH, Eom JS, Kang HG, Han Y, Choi SB, Cho MH, Bhoo SH, An G, Hahn TR, Okita TW, Jeon JS (2007) Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65:531–546

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Jeon JS, Börnke F, Voll L, Cho JI, Goh CH, Jeong SW, Park YI, Kim SJ, Choi SB, Miyao A, Hirochika H, An G, Cho MH, Bhoo SH, Sonnewald U, Hahn TR (2008) Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). Plant Cell Environ 31:1563–1851

    Article  Google Scholar 

  • Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipka V, Häusler RE, Rademacher T, Li J, Hirsch HJ, Kreuzaler F (1999) Solanum tuberosum double transgenic carboxylase and NADP-malic enzyme display reduced electron reuirement for CO2 fixation. Plant Sci 144:93–105

    Article  CAS  Google Scholar 

  • Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends Plant Sci 10:130–137

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maier A, Fahnenstich H, von Caemmerer S, Engqvist MK, Weber AP, Flügge UI, Maurino VG (2012) Transgenic introduction of a glycolate oxidative cycle into A. thaliana chloroplasts leads to growth improvement. Front Plant Sci 3:1–12

    Article  Google Scholar 

  • Micallef BJ, Haskins KA, Vanderveer PJ, Roth K-S, Shewmaker CK, Sharkey TD (1995) Altered photosynthesis, flowering and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196:327–334

    Article  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1, 6-/sedoheptulose-1, 7-bisphoaphatase in tobacco enhances photosynthesis and growth. Nature 19:965–969

    CAS  Google Scholar 

  • Neuhaus HE, Stitt M (1990) Control analysis of photosynthate partitioning: impact of reduced activity of ADP glucose pyrophospharlase on plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana (L.) Heynh. Planta 182:445–454

    Article  CAS  Google Scholar 

  • Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    Article  PubMed  Google Scholar 

  • Nölke G, Houdelet M, Kreuzaler F, Peterhänsel C, Schillberg S (2014) The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnol J 12:734–742

    Article  PubMed  Google Scholar 

  • Obana Y, Omoto D, Kato C, Matsumoto K, Nagai Y, Kavakli IH, Hamada S, Edwards GE, Okita TW, Matsui H, Ito H (2006) Enhanced turnover of transitory starch by expression of up-regulated ADP-glucose pyrophosphorylases in Arabidopsis thaliana. Plant Sci 170:1–11

    Article  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35:415–442

    Article  CAS  Google Scholar 

  • Ölçer H, Lloyd JC, Raines CA (2001) Photosynthetic capacity is differentially affected by reductions in sedoheptulose-1,7-bisphosphatase activity during leaf development in transgenic tobacco plants. Plant Physiol 125:982–989

    Article  PubMed Central  PubMed  Google Scholar 

  • Olson BJ, Skavdahl M, Ramberg H, Osterman JC, Markwell J (2000) Formate dehydrogenase in Arabidopsis thaliana: characterization and possible targeting to the chloroplast. Plant Sci 159:205–212

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Canam T, Kang KY, Ellis DD, Mansfield SD (2008) Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Res 17:181–192

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Badger MR, von Caemmerer S (2010) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    Article  PubMed Central  PubMed  Google Scholar 

  • Renström E, Bergman B (1989) Glycolate metabolism in cyanobacteria I. Glycolate excretion and phosphoglycolate phosphatase activity. Physiol Plant 75:137–143

    Article  Google Scholar 

  • Reynold M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  Google Scholar 

  • Riesmeier JW, Flügge UI, Schulz B, Heineke D, Heldt HW, Willmitzer L, Frommer WB (1993) Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc Natl Acad Sci USA 90:6160–6164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenthal D, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147

    Article  CAS  PubMed  Google Scholar 

  • Sanwal GG, Greenberg E, Hardie J, Cameron EC, Preiss J (1968) Regulation of starch biosynthesis in plant leaves: activation and inhibition of ADP glucose pyrophosphorylase. Plant Physiol 43:417–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanz-Barrio R, Corral-Martinez P, Ancin M, Segui-Simarro JM, Farran I (2013) Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11:618–627

    Article  CAS  PubMed  Google Scholar 

  • Sayre KD, Rajaram S, Fischer RA (1997) Yield potential progress in short bread wheats in northwest Mexico. Crop Sci 37:36–42

    Article  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Signora L, Galtier N, Skøt L, Lucas H, Foyer CH (1998) Over-expression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. J Exp Bot 49:669–680

    CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  CAS  PubMed  Google Scholar 

  • Smith-White BJ, Preiss J (1992) Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 34:449–464

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1990) Fructose-2,6-bisphosphate as a regulatory metabolite in plants. Annu Rev Plant Physiol Plant Mol Biol 41:153–185

    Article  CAS  Google Scholar 

  • Stitt M, Lunn J, Usadel B (2010) Arabidopsis and primary photosynthetic metabolism—more than the icing on the cake. Plant J 61:1067–1091

    Article  CAS  PubMed  Google Scholar 

  • Strand A, Zrenner R, Trevanion S, Stitt M, Gustaffson P, Gardeström P (2000) Decreased expression of two enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. Plant J 23:759–770

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Takeuchi Y, Akagi H, Kamasawa N, Osumi M, Honda H (2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211:265–274

    Article  CAS  PubMed  Google Scholar 

  • Tamoi M, Nagaoka M, Yabuta Y, Shigeoka S (2005) Carbon metabolism in the Calvin cycle. Plant Biotechnol 22:355–360

    Article  CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S (2006) Contribution of fructose-1, 6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the calvin cycle in transgenic plants. Plant Cell Physiol 47:380–390

    Article  CAS  PubMed  Google Scholar 

  • Tiessen A, Hendriks JH, Stitt M, Branscheid A, Gibon Y, Farré EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toivola J, Nikkanen L, Dahlström KM, Salminen TA, Lepistö A, Vignols HF, Rintamaki E (2013) Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains. Front Plant Sci 4:1–18

    Article  Google Scholar 

  • Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y, Lee BH, Hirose S, Toki S, Ku MS, Matsuoka M, Miyao M (2001) High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol 42:138–145

    Article  CAS  PubMed  Google Scholar 

  • Tuncel A, Okita TW (2013) Improving starch yield in cereals by over-expression of ADP glucose pyrophosphorylase: expectations and unanticipated outcomes. Plant Sci 211:52–60

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H (2012) Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009

    Article  CAS  PubMed  Google Scholar 

  • Van Camp W (2005) Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 16:147–153

    Article  PubMed  Google Scholar 

  • Villand P, Olsen OA, Kleczkowski LA (1993) Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol 23:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Weber APM (2004) Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol 7:247–253

    Article  CAS  PubMed  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2007) The diurnal metabolism of leaf starch. Biochem J 401:13–28

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Krause KP, Apel P, Sonnewald U (1996) Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J 9:671–681

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Next-Generation BioGreen 21 Program (SSAC, Grant#: PJ00948405 and PJ00950604), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Ryong Hahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, MH., Park, H.L. & Hahn, TR. Engineering leaf carbon metabolism to improve plant productivity. Plant Biotechnol Rep 9, 1–10 (2015). https://doi.org/10.1007/s11816-014-0339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-014-0339-y

Keywords

Navigation