Skip to main content
Log in

Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

ADP-glucose pyrophosphorylase (AGP) catalyzes the first committed step of starch biosynthesis in higher plants. To identify AGP isoforms essential for this biosynthetic process in sink and source tissues of rice plants, we analyzed the rice AGP gene family which consists of two genes, OsAGPS1 and OsAGPS2, encoding small subunits (SSU) and four genes, OsAGPL1, OsAGPL2, OsAGPL3 and OsAGPL4, encoding large subunits (LSU) of this enzyme heterotetrameric complex. Subcellular localization studies using green fluorescent protein (GFP) fusion constructs indicate that OsAGPS2a, the product of the leaf-preferential transcript of OsAGPS2, and OsAGPS1, OsAGPL1, OsAGPL3, and OsAGPL4 are plastid-targeted isoforms. In contrast, two isoforms, SSU OsAGPS2b which is a product of a seed-specific transcript of OsAGPS2, and LSU OsAGPL2, are localized in the cytosol. Analysis of osagps2 and osagpl2 mutants revealed that a lesion of one of the two cytosolic isoforms, OsAGPL2 and OsAGPS2b, causes a shrunken endosperm due to a remarkable reduction in starch synthesis. In leaves, however, only the osagps2 mutant appears to severely reduce the transitory starch content. Interestingly, the osagps2 mutant was indistinguishable from wild type during vegetative plant growth. Western blot analysis of the osagp mutants and wild type plants demonstrated that OsAGPS2a is an SSU isoform mainly present in leaves, and that OsAGPS2b and OsAGPL2 are the major SSU and LSU isoforms, respectively, in the endosperm. Finally, we propose a spatiotemporal complex model of OsAGP SSU and LSU isoforms in leaves and in developing endosperm of rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akihiro T, Mizuno K, Fujimura T (2005) Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 46:937–946

    Article  PubMed  CAS  Google Scholar 

  • Ballicora MA, Dubay JR, Devillers CH, Preiss J (2005) Resurrecting the ancestral enzymatic role of a modulatory subunit. J Biol Chem 280:10189–10195

    Article  PubMed  CAS  Google Scholar 

  • Ballicora MA, Laughlin MJ, Fu Y, Okita TW, Barry GF, Preiss J (1995) Adenosine 5′-diphosphate-glucose pyrophosphorylase from potato tuber. Significance of the N terminus of the small subunit for catalytic properties and heat stability. Plant Physiol 109:245–251

    Article  PubMed  CAS  Google Scholar 

  • Banks W, Greenwood CT (1975) Starch and its components. Edinburgh University Press, Edinburgh, Scotland

    Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Akazawa T, Pozueta-Romero J (2001) Reappraisal of the currently prevailing model of starch biosynthesis in photosynthetic tissues: A proposal involving the cytosolic production of ADP-glucose by sucrose synthase and occurrence of cyclic turnover of starch in the chloroplast. Plant Cell Physiol 42:1311–1320

    Article  PubMed  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Zandueta-Criado A, Morán-Zorzano MT, Viale AM, Alonso-Casajús N, Pozueta-Romero J (2004) Most of ADP glucose linked to starch biosynthesis occurs outside the chloroplast in source leaves. Proc Natl Acad Sci USA 101:13080–13085

    Article  PubMed  Google Scholar 

  • Beckles DM, Smith AM, ap Rees T (2001a) A cytosolic ADP-glucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch-storing organs. Plant Physiol 125:818–827

    Article  CAS  Google Scholar 

  • Beckles DM, Craig J, Smith AM (2001b) ADP-glucose pyrophosphorylase is located in the plastid in developing tomato fruit. Plant Physiol 126:261–266

    Article  CAS  Google Scholar 

  • Bhave MR, Lawrence S, Barton C, Hannah LC (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2:581–588

    Article  PubMed  CAS  Google Scholar 

  • Burger B, Cross J, Okita TW, Hannah LC (2003) Relative turnover numbers of maize endosperm and potato tuber ADPglucose pyrophosphorylases in the absence and presence of 3-PGA. Planta 217:449–456

    Article  PubMed  CAS  Google Scholar 

  • Burton RA, Johnson PE, Beckles DM, Fincher GB, Jenner HL, Naldrett MJ, Denyer K (2002) Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol 130:1464–1475

    Article  PubMed  CAS  Google Scholar 

  • Choi SB, Kim KH, Kavakli IH, Lee SK, Okita TW (2001) Transcriptional expression characteristics and subcellular localization of ADP-glucose pyrophosphorylase in the oil plant Perilla frutescens. Plant Cell Physiol 42:146–153

    Article  PubMed  CAS  Google Scholar 

  • Choi SB, Zhang Y, Ito H, Stephens K, Winder T, Edwards GE, Okita TW (1998) Increasing rice productivity by manipulation of starch biosynthesis during seed development. In: Armstrong DG, Riley R, Waterlow JC (eds) Feeding a world population of more than eight billion people: a challenge to science. Oxford University Press, New York, pp 137–149

    Google Scholar 

  • Crevillén P, Ballicora MA, Mérida A, Preiss J, Romero JM (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278:28508–28515

    Article  PubMed  CAS  Google Scholar 

  • Denyer K, Dunlap F, Thorbjornsen T, Keeling P, Smith AM (1996) The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol 112:779–785

    Article  PubMed  CAS  Google Scholar 

  • Doan DN, Rudi H, Olsen OA (1999) The allosterically unregulated isoform of ADP-glucose pyrophosphorylase from barley endosperm is the most likely source of ADP-glucose incorporated into endosperm starch. Plant Physiol 121:965–975

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. J Exp Bot 56:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Boyer C, Feix G, Hannah LC (1994) Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol 106:713–722

    PubMed  CAS  Google Scholar 

  • Giroux MJ, Hannah LC (1994) ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Mol Gen Genet 243:400–408

    PubMed  CAS  Google Scholar 

  • Giroux MJ, Shaw J, Barry G, Cobb BG, Greene T, Okita T Hannah LC (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci USA 93:5824–5829

    Article  PubMed  CAS  Google Scholar 

  • Greene TW, Hannah LC (1998) Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions. Plant Cell 10:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Greene TW, Kavakli IH, Kahn ML, Okita TW (1998) Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics. Proc Natl Acad Sci USA 95:10322–10327

    Article  PubMed  CAS  Google Scholar 

  • Hannah LC, Shaw JR, Giroux MJ, Reyss A, Prioul JL, Bae JM, Lee JY (2001) Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physiol 127:173–183

    Article  PubMed  CAS  Google Scholar 

  • Haugen TH, Ishaque A, Preiss J (1976) Biosynthesis of bacterial glycogen. characterization of the subunit structure of Escherichia coli B glucose-1-phosphate adenylyltransferase (EC 2.7.7.27). J Biol Chem 251:7880–7885

    PubMed  CAS  Google Scholar 

  • Hendriks JH, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838–849

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Ohdan T, Nakamurac Y, Teraoa T (2006) Expression profiling of genes related to starch synthesis in rice leaf sheaths during the heading period. Physiol Plant 128:425–435

    Article  CAS  Google Scholar 

  • Hwang SK, Hamada S, Okita TW (2006) ATP binding site in the plant ADP-glucose pyrophosphorylase large subunit. FEBS Lett 580:6741–6748

    Article  PubMed  CAS  Google Scholar 

  • Hwang SK, Hamada S, Okita TW (2007) Catalytic implications of the higher plant ADP-glucose pyrophosphorylase large subunit. Phytochemistry doi:10.1016/j.phytochem. 2006.11.027

  • Hwang SK, Salamone PR, Okita TW (2005) Allosteric regulation of the higher plant ADP-glucose pyrophosphorylase is a product of synergy between the two subunits. FEBS Lett 579:983–990

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Jelitto T, Sonnewald U, Willmitzer L, Hajirezaei M, Stitt M (1992) Inorganic pyrophosphate content and metabolites in leaves and tubers of potato and tobacco plants expressing E. coli pyrophosphatase in the cytosol: biochemical evidence that sucrose metabolism has been manipulated. Planta 188:238–244

    Article  CAS  Google Scholar 

  • Jeon J, An G (2001) Gene tagging in rice: A high throughput system for functional genomics. Plant Sci 161:211–219

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  PubMed  CAS  Google Scholar 

  • Johnson PE, Patron NJ, Bottrill AR, Dinges JR, Fahy BF, Parker ML, Waite DN, Denyer K (2003) A low-starch barley mutant, riso 16, lacking the cytosolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiol 131:684–696

    Article  PubMed  CAS  Google Scholar 

  • Kavakli IH, Kato C, Choi SB, Kim KH, Salamone PR, Ito H, Okita TW (2002) Generation, characterization, and heterologous expression of wild-type and up-regulated forms of Arabidopsis thaliana leaf ADP-glucose pyrophosphorylase. Planta 215:430–439

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe Y, Kubo A, Satoh H, Takaiwa F, Nakamura Y (2005) Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm. Plant J 42:164–174

    Article  PubMed  CAS  Google Scholar 

  • Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA 102:11118–11123

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Lee DS, Bhoo SH, Jeon JS, Lee YH, Hahn TR (2005) Transgenic Arabidopsis plants expressing Escherichia coli pyrophosphatase display both altered carbon partitioning in their source leaves and reduced photosynthetic activity. Plant Cell Rep 24:374–382

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim J, Son JS, Nam J, Jeong DH, Lee K, Jang S, Yoo J, Lee J, Lee DY, Kang HG, An G (2003) Systematic reverse genetic screening of T-DNA tagged genes in rice for functional genomic analyses: MADS-box genes as a test case. Plant Cell Physiol 44:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Lin TP, Caspar T, Somerville CR, Preiss J (1988a) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heynh lacking ADPglucose pyrophosphorylase activity. Plant Physiol 86:1131–1135

    CAS  Google Scholar 

  • Lin TP, Caspar T, Somerville CR, Preiss J (1988b) A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88:1175–1181

    CAS  Google Scholar 

  • Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29:353–366

    Article  PubMed  CAS  Google Scholar 

  • Luo C, Dejardin A, Villand P, Doan DN, Kleczkowski LA (1997) Differential processing of homologues of the small subunit of ADP-glucose pyrophosphorylase from barley (Hordeum vulgare) tissues. Z Naturforsch [C] 52:807–811

    CAS  Google Scholar 

  • Morell MK, Myers AM (2005) Towards the rational design of cereal starches. Curr Opin Plant Biol 8:204–210

    Article  PubMed  CAS  Google Scholar 

  • Murchie EH, Yang J, Hubbart S, Horton P, Peng S (2002) Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J Exp Bot 53:2217–2224

    Article  PubMed  CAS  Google Scholar 

  • Müller-Röber BT, Kossmann J, Hannah LC, Willmitzer L, Sonnewald U (1990) One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet 224:136–146

    Article  PubMed  Google Scholar 

  • Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajús N, Pozueta-Romero J (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46:1366–1376

    Article  PubMed  CAS  Google Scholar 

  • Nakano H, Makino A, Mae T (1995) Effects of panicle removal on the photosynthetic characteristics of the flag leaf of rice plants during the ripening stage. Plant cell Physiol 36:653–659

    CAS  Google Scholar 

  • Nakano H, Makino A, Mae T (1997) The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol 115:191–198

    PubMed  CAS  Google Scholar 

  • Nakata PA, Anderson JM, Okita TW (1994) Structure and expression of the potato ADP-glucose pyrophosphorylase small subunit. J Biol Chem 269:30798–30807

    PubMed  CAS  Google Scholar 

  • Nakata PA, Greene TW, Anderson JM, Smith-White BJ, Okita TW, Preiss J (1991) Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol 17:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE (1982) Genetic control of polysaccharide and storage protein synthesis in endosperms of barley, maize and sorghum. In: Pomeranz Y (ed) Advances in cereal science and technology, vol III. American Association of Cereal Chemists, St. Paul, pp 41–71

    Google Scholar 

  • Niittylä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    Article  PubMed  CAS  Google Scholar 

  • Ohdan T, Francisco PB Jr, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    Article  PubMed  CAS  Google Scholar 

  • Okita TW (1992) Is there an alternative pathway for starch synthesis? Plant Physiol 100:560–564

    Article  PubMed  CAS  Google Scholar 

  • Okita TW, Nakata PA, Anderson JM, Sowokinos J, Morell M, Preiss J (1990) The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol 93:785–790

    PubMed  CAS  Google Scholar 

  • Ouwerkerk PB, de Kam RJ, Hoge JH, Meijer AH (2001) Glucocorticoid-inducible gene expression in rice. Planta 213:370–378

    Article  PubMed  CAS  Google Scholar 

  • Patron NJ, Greber B, Fahy BF, Laurie DA, Parker ML, Denyer K (2004) The lys5 mutations of barley reveal the nature and importance of plastidial ADP-glc transporters for starch synthesis in cereal endosperm. Plant Physiol 135:2088–2097

    Article  PubMed  CAS  Google Scholar 

  • Rösti S, Rudi H, Rudi K, Opsahl-Sorteberg HG, Fahy B, Denyer K (2006) The gene encoding the cytosolic small subunit of ADP-glucose pyrophosphorylase in barley endosperm also encodes the major plastidial small subunit in the leaves. J Exp Bot 57:3619–3626

    Article  PubMed  CAS  Google Scholar 

  • Sakulsingharoj C, Choi SB, Ogawa M, Singh S, Bork J, Meyer CR, Edwards GE, Preiss J, Okita TW (2003) Manipulating starch and storage protein biosynthesis during endosperm development to increase rice yield. In: Mew TW, DS Brar DS, S Peng S, Dawe D, Hardy B (eds) Rice science: innovations and impact for livelihood. International Rice Research Institute, Makati City, Philippines, pp 345–359

    Google Scholar 

  • Salamone PR, Kavakli IH, Slattery CJ, Okita TW (2002) Directed molecular evolution of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA 99:1070–1075

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Hausler RE, Kolukisaoglu U, Kunze R, van der Graaff E, Schwacke R, Catoni E, Desimone M, Flugge UI (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant J 32:685–699

    Article  PubMed  CAS  Google Scholar 

  • Shannon JC, Pien FM, Cao H, Liu KC (1998) Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADP-glucose into amyloplasts of maize endosperms. Plant Physiol 117:1235–1252

    Article  PubMed  CAS  Google Scholar 

  • Sikka VK, Choi SB, Kavakli IH, Sakulsingharoj C, Gupta S, Ito H, Okita TW (2001) Subcellular compartmentation and allosteric regulation of the rice endosperm ADPglucose pyrophosphorylase. Plant Sci 161:461–468

    Article  CAS  Google Scholar 

  • Singh S, Choi SB, Modi MK, Okita TW (2002) Isolation and characterization of cDNA clones encoding ADP-glucose pyrophosphorylase (AGPase) large and small subunits from chickpea (Cicer arietinum L.). Phytochemistry 59:261–268

    Article  PubMed  CAS  Google Scholar 

  • Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ (2002) Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. Proc Natl Acad Sci USA 99:1724–1729

    Article  PubMed  CAS  Google Scholar 

  • Smidansky ED, Martin JM, Hannah LC, Fischer AM, Giroux MJ (2003) Seed yield and plant biomass increases in rice are conferred by deregulation of endosperm ADP-glucose pyrophosphorylase. Planta 216:656–664

    PubMed  CAS  Google Scholar 

  • Smidansky ED, Meyer FD, Blakeslee B, Weglarz TE, Greene TW, Giroux MJ (2006) Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta DOI 10.1007/s00425-006-0400-3

  • Smith AM, Denyer K, Martin CR (1995) What controls the amount and structure of starch in storage organs? Plant Physiol 107:673–677

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  PubMed  CAS  Google Scholar 

  • Smith-White BJ, Preiss J (1992) Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 34:449–464

    Article  PubMed  CAS  Google Scholar 

  • Stark DM, Timmermann KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphorylase. Science 258:287–292

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Okita TW, Edwards GE (1999) Feedback inhibition of photosynthesis in rice measured by O2 dependent transients. Photosynth Res 59:187–200

    Article  CAS  Google Scholar 

  • Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Thorbjørnsen T, Villand P, Denyer K, Olsen OA, Smith AM (1996a) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant J 10:243–250

    Article  Google Scholar 

  • Thorbjørnsen T, Villand P, Kleczkowski LA, Olsen OA (1996b) A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J 313:149–154

    Google Scholar 

  • Tiessen A, Hendriks JH, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: A novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell 14:2191–2213

    Article  PubMed  CAS  Google Scholar 

  • Vain P, Afolabi AS, Worland B, Snape JW (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: PGreen/pSoup. Theor Appl Genet 107:210–217

    Article  PubMed  CAS  Google Scholar 

  • Van Camp W (2005) Yield enhancement genes: seeds for growth. Curr Opin Biotechnol 16:147–153

    Article  PubMed  CAS  Google Scholar 

  • Villand P, Olsen OA, Kleczkowski LA (1993) Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol 23:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Walters RG, Ibrahim DG, Horton P, Kruger NJ (2004) A mutant of Arabidopsis lacking the triose-phosphate/phosphate translocator reveals metabolic regulation of starch breakdown in the light. Plant Physiol 135:891–906

    Article  PubMed  CAS  Google Scholar 

  • Wang SM, Chu B, Lue WL, Yu TS, Eimert K, Chen J (1997) adg2-1 represents a missense mutation in the ADPG pyrophosphorylase large subunit gene of Arabidopsis thaliana. Plant J 11:1121–1126

    Article  PubMed  CAS  Google Scholar 

  • Winder TL, Sun J, Okita TW, Edwards GE (1998) Evidence for the occurrence of feedback inhibition of photosynthesis in rice. Plant Cell Physiol 39:813–820

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Pieter Ouwerkerk (Institute of Biology, Leiden University, The Netherlands) for the binary vector pC1300intC. This work was supported, in part, by grants from SRC for the Plant Metabolism Research Center (PMRC), Korea Science and Engineering Foundation (KOSEF) Program; from the Biogreen 21 Program, Rural Development Administration; from the Crop Functional Genomic Center (CG1422 and CG1111), the 21 Century Frontier Program; and from the BK21 Program, Ministry of Education and Human Resources Development. S.-K. H. and T.W.O. gratefully acknowledge support by the U.S. Department of Energy Grant No. DE-FG02-96ER20216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SK., Hwang, SK., Han, M. et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol 65, 531–546 (2007). https://doi.org/10.1007/s11103-007-9153-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9153-z

Keywords

Navigation