Skip to main content
Log in

Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max. L)

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

In this paper, we isolated and characterized a gene encoding the soybean MYB transcription factor, GmMYB39 (Accession No: XM_003538605). Analysis of the deduced amino acid sequence revealed that GmMYB39 contained N-terminal R2R3 repeats that corresponded to the DNA-binding domain of plant MYB-type proteins, which were highly conserved among the R2R3-MYB proteins. The detailed expression pattern of GmMYB39 in various tissues of soybean was investigated by quantitative RT-PCR. The transcript level was found to be higher in flowers than in other examined organs. In contrast, the GmMYB39 expression level was relatively weak in the pod. The GmMYB39–GFP fusion protein was found to localize in the nucleus of Arabidopsis mesophyll protoplasts. Over-expression of GmMYB39 in hairy roots resulted in a significant reduction of the transcript levels of PAL, C4H, CHS, 4CL, and CHR. Whereas, the IFS transcript level was slightly but not significantly increased, and no significant change in CHI expression was observed between over-expression and control roots. The repressing effect on expression of CHS was further supported by the results from co-transfection assays of CHS promoter (reporter) and GmMYB39 (effector) in soybean. Compared to the control (only with the reporter construct), a significant decrease in the GUS activity was observed in soybean hairy roots with both effector and reporter constructs. Furthermore, an ultimate decrease in isoflavonoids contents coincided with the decrease in the transcript levels of PAL, C4H, CHS, 4CL, and CHR. Overall, the results suggest that GmMYB39 plays an inhibiting role in regulating the isoflavonoid biosynthesis in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4CL:

4-coumarate: CoA ligase

C4H:

Cinnamate 4-hydroxylase

CHI:

Chalcone isomerase

CHR:

Chalcone reductase

CHS:

Chalcone synthase

DAP:

Days after pollination

GUS:

β-Glucuronidase

IFS:

Isoflavone synthase

PAL:

Phenylalanine ammonia lyase

TFs:

Transcriptional factors

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    PubMed  CAS  Google Scholar 

  • Aharoni A, Ric De Vos CH, Wein M, Sun ZK, Greco R, Kroon A, Mol JNM, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    PubMed  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Yang XY, He K, Liu M, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY, Qu LJ (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  CAS  Google Scholar 

  • Chen SB, Songkumarn P, Liu JL, Wang GL (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648

    Article  PubMed  CAS  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  PubMed  CAS  Google Scholar 

  • Dhaubhadel S, McGarvey BD, Williams R, Gijzen M (2003) Isoflavonoid biosynthesis and accumulation in developing soybean seed. Plant Mol Biol 53:733–743

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Dixon RA, Harrison MJ, Paiva NL (1995) The isoflavonoid phytoalexin pathway: from enzymes to genes to transcription factors. Physiol Plant 93:385–392

    Article  CAS  Google Scholar 

  • Du F, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX (2012) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    Article  PubMed  CAS  Google Scholar 

  • Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. CA Cancer J Clin 57:260–277

    Article  PubMed  Google Scholar 

  • Glover BJ, Perez-Rodriguez M, Maryin C (1998) Development of several epidermal cell types can be specified by the same MYB-related plant transcriptional factor. Development 125:3497–3508

    PubMed  CAS  Google Scholar 

  • Goff SA, Klein TM, Roth BA, Fromm ME, Cone KC, Radicella JP, Chandler VL (1990) Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J 9:2517–2522

    PubMed  CAS  Google Scholar 

  • Goff SA, Cone KC, Chandler VL (1992) Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev 6:864–875

    Article  PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:1–19

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan M (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JR (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalone isomerase. Nat Struct Biol 7:786–791

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161

    Article  PubMed  CAS  Google Scholar 

  • Ju XR, Yuan J, Wang HF (2001) Study on determination of soybean isoflavones content by three-wavelength, UV Spectrophotometry. Food Sci 22:46–48 (in Chinese)

    CAS  Google Scholar 

  • Jung W, Yu O, Lau SC (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavone in legumes. Nat Biotechnol 18:208–212

    Article  PubMed  CAS  Google Scholar 

  • Kassem MA, Meksem K, Iqbal MJ, Njiti VN, Banz WJ, Winters TA, Wood A, Lightfoot DA (2004) Definition of soybean genomic regions that control seed phytoestrogen amounts. J Biomed Biotechnol 1:52–60

    Article  Google Scholar 

  • Kereszt A, Li D, Indrasumunar A, Nguyen CD, Nontachaiyapoom S, Kinkema M, Gresshoff PM (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952

    Article  PubMed  CAS  Google Scholar 

  • Martin C (1996) Transcription factors and the manipulation of plant traits. Curr Opin Biotechnol 7:130–138

    Article  CAS  Google Scholar 

  • Meksem K, Njiti VN, Banz WJ, Iqbal MJ, Kassem MM, Hyten DL, Yuang J, Winters TA, Lightfoot DA (2001) Genomic regions that underlie soybean seed isoflavone content. J Biomed Biotechnol 1:38–44

    Article  PubMed  CAS  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  PubMed  CAS  Google Scholar 

  • Middleton E, Kandaswami C (1994) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer. In: Harborne JB (ed) The flavonoids. Advances in research since 1986. Chapman and Hall, London, pp 619–652

  • Misra P, Pandey A, Manish Tiwari, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

  • Morris PF, Bone E, Tyler BM (1998) Chemotropic and contact responses of Phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117:1171–1178

    Article  PubMed  CAS  Google Scholar 

  • Nestel P (2003) Isoflavones: their effects on cardiovascular risk and function. Curr Opin Lipidol 14:3–8

    Article  PubMed  CAS  Google Scholar 

  • Okubo K, Iilima M, Kobayshi Y, Yosshikoshi M, Uchida T, Kudou S (1992) Components responsible for the undesirable taste of soybean seeds. Biosci Biotech Biochem 56:99–103

    Article  CAS  Google Scholar 

  • Palapol Y, Ketsa S, Wang KL, Ferguson IB, Allan AC (2009) A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening. Planta 229:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J, Li SF, Parish RW (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40:979–995

    Article  PubMed  CAS  Google Scholar 

  • Primomo VS, Poysa V, Ablett GR, Jackson C-J, Gijzen M, Rajcan I (2005) Mapping QTL for individual and total isoflavone content in soybean. Crop Sci 45:2454–2464

    Article  CAS  Google Scholar 

  • Pueppke JL (1996) The genetics and biochemical basis for nodulation of legumes by rhizobia. Crit Rev Biotechnol 16:1–51

    Article  PubMed  CAS  Google Scholar 

  • Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    Article  PubMed  CAS  Google Scholar 

  • Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J (1998) More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J 14:273–284

    Article  PubMed  CAS  Google Scholar 

  • Sablowski RW, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    PubMed  CAS  Google Scholar 

  • Sangeeta D, Mark G, Pat M, Muna F (2007) Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol 143:326–338

    Google Scholar 

  • Setchell KDR (2001) Soy isoflavones-benefits and risks from nature’s selective estrogen receptor modulators (SERMs). J Am Coll Nutr 20:354S–362S

    Article  PubMed  CAS  Google Scholar 

  • Shama RD (1979) Isoflavones and hypercholesterolemia in rats. Lipids 14:535–540

    Article  Google Scholar 

  • Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P (2012) Transcription factors of lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. Plant Physiol 159:531–547

    Article  PubMed  CAS  Google Scholar 

  • Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    PubMed  CAS  Google Scholar 

  • Smith DA, Banks SW (1986) Biosynthesis, elicitation and biological activity of isoflavonoid phytoalexins. Phytochemistry 25:979–995

    Article  CAS  Google Scholar 

  • Solano R, Nieto C, Avila J, Cañas L, Diaz I, Paz-Ares J (1995) Dual DNA binding specificity of a petal epidermis specific MYB transcription factor (MYB.Ph3) from Petunia hybrid. EMBO J 14:1773–1784

    PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B (2007) Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J 50:660–677

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Graham MA, Yu O, Graham TL (2005) RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 137:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn R, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbial Rev 59:124–142

    Google Scholar 

  • Verboeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106

    Article  Google Scholar 

  • Verdier J, Zhao J, Torres-Jereza I, Ge SJ, Liu CG, He XZ, Mysorea KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci USA 109:1766–1771

    Article  PubMed  CAS  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  PubMed  CAS  Google Scholar 

  • Yi JX, Derynck MR, Li XY, Telmer P, Marsolais F, Dhaubhadel S (2010) A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J 62:1019–1034

    PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Prot 2:1565–1572

    Article  CAS  Google Scholar 

  • Yoshida K, Iwasaka R, Kaneko T, Sato S, Tabata S, Sakuta M (2008) Functional differentiation of Lotus japonicus TT2s, R2R3-MYB transcription factors comprising a multigene family. Plant Cell Physiol 49:157–169

    Article  PubMed  CAS  Google Scholar 

  • Yu O, McGonigle B (2005) Metabolic engineering of isoflavone biosynthesis. Adv Agron 86:147–190

    Article  CAS  Google Scholar 

  • Yu O, Shi J, Hession AO, Maxwell AA, McGonigle B, Odell JT (2003) Metabolic engineering to increase isoflavone biosynthesis in soybean seeds. Phytochemistry 63:753–763

    Article  PubMed  CAS  Google Scholar 

  • Zhou ML, Hou HL, Zhu XM, Shao JR, Wu YM, Tang YX (2011) Soybean transcription factor GmMYBZ2 represses catharanthine biosynthesis in hairy roots of Catharanthus roseus. Appl Microbiol Biotechnol 91:1095–1105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the National Science Foundation of China (31101166, 30971798); the Jiangsu Natural Science Foundation, China (BK2010474); Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF), (CX(12)5021); Jiangsu Key Laboratory for Bioresources of Saline Soils (JKLBS2012001) and the Project in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2011BAD35B06-4-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxin Yi or Dayong Zhang.

Additional information

X. Liu and L. Yuan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Yuan, L., Xu, L. et al. Over-expression of GmMYB39 leads to an inhibition of the isoflavonoid biosynthesis in soybean (Glycine max. L). Plant Biotechnol Rep 7, 445–455 (2013). https://doi.org/10.1007/s11816-013-0283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-013-0283-2

Keywords

Navigation