Skip to main content
Log in

Suppression of Arabidopsis genes by terminator-less transgene constructs

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Transgene-mediated gene silencing is an important biotechnological and research tool. There are several RNAi-mediated techniques available for silencing genes in plants. The basis of all these techniques is to generate double-stranded RNA precursors in the cell, which are recognized by the cellular surveillance system, and marked for degradation by the Dicer family RNases into siRNAs. Improperly terminated, unpolyadenylated RNA are precursors of double-stranded RNA, and, therefore, can serve as silencing triggers in plants. Such transcripts can easily be synthesized from transgene constructs lacking transcription-terminator signals (terminator-less constructs). The present study determined the silencing efficiency of terminator-less constructs on six different genes in Arabidopsis: Phytochrome A (PHYA), Brassinosteroid Insensitive 1 (BRI1), Variegated 2 (VAR2), Constans (CO), Apetala 1 (AP1) and Transparent Testa Glabra 1 (TTG1). Expression of terminator-less gene fragments of PHYA, AP1, and VAR2 resulted in a ~90 % decline, and those of BRI1 and CO resulted in a ~70 % decline, in the steady state level of the respective transcript in transgenic lines compared to the wild-type. This suppression was accompanied by phenotypic aberrations in selected transgenic lines. Thus, targeted gene suppression in plants can be initiated by the expression of a simple construct design consisting of a gene fragment lacking transcription terminator signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali N, Datta SK, Datta K (2010) RNA interference in designing transgenic crops. GM Crops 1(4):207–213

    Article  PubMed  Google Scholar 

  • Ambavaram MM, Krishnan A, Trijatmiko KR, Pereira A (2011) Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol 155(2):916–931

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Silva P, Nixon P, Mullineaux C, Robinson C, Mann N (2001) Auxiliary functions in photosynthesis: the role of the FtsH protease. Biochem Soc Trans 29:455–459

    Article  PubMed  CAS  Google Scholar 

  • Bailey S, Thompson E, Nixon PJ et al (2002) A critical role for the Var2 FtsH homologue of Arabidopsis thaliana in the photosystem II repair cycle in vivo. J Biol Chem 277:2006–2011

    Article  PubMed  CAS  Google Scholar 

  • Bleys A, Vermeersch L, Van Houdt H, Depicker A (2006) The frequency and efficiency of endogene suppression by transitive silencing signals is influenced by the length of sequence homology. Plant Physiol 142:788–796

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by Apetala1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Chen M, Jensen M, Rodermel S (1999) The yellow variegated mutant of Arabidopsis is plastid autonomous and delayed in chloroplast biogenesis. J Hered 90:207–214

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Choi YD, Voytas DF, Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313

    Article  PubMed  Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97(9):4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Filichkin SA, Difazio SP, Brunner AM et al (2007) Efficiency of gene silencing repeats vs. transitive RNAi in Arabidopsis: direct inverted vectors. Plant Biotechnol J 5:615–626

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8(6):655–677

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Uauy C, Blechl A, Dubcovsky J (2007) RNA interference for wheat functional gene analysis. Transgenic Res 16(6):689–701

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25(6):989–994

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Hirai S, Takahashi K, Abiko T, Kodama H (2010) Loss of sense transgene-induced post-transcriptional gene silencing by sequential introduction of the same transgene sequences in tobacco. FEBS J 277(7):1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the Apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    PubMed  CAS  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) Transparent Testa Glabra2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA, Doetsch N, Muller A, Que Q, Gendler K, Napoli CA (2006) A paragenetic perspective on integration of RNA silencing into the epigenome and its role in the biology of higher plants. Cold Spring Harb Symp Quant Biol 71:481–485

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Taira K (2003) Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 31:700–707

    Article  PubMed  CAS  Google Scholar 

  • Larkin JC, Oppenheimer DG, Lloyd AM, Paparozzi ET, Marks MD (1994) Roles of the Glabrous1 and Transparent Testa Glabra genes in Arabidopsis trichome development. Plant Cell 6:1065–1076

    PubMed  CAS  Google Scholar 

  • Lee NS, Dohjima T, Bauer G et al (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20:500–505

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19:943–958

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Zapater JM (1993) Genetic-analysis of variegated mutants in Arabidopsis. J Hered 84:138–140

    Google Scholar 

  • McGinnis K, Murphy N, Carlson AR et al (2007) Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiol 143(4):1441–1451

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Ziv M, Lemaux PG (2006) Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62(1–2):15–28

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that are deficient in Phytochrome-A. Plant Physiol 102:269–277

    PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Nicholson SJ, Srivastava V (2009) Transgene constructs lacking transcription termination signal induce efficient silencing of endogenous targets in Arabidopsis. Mol Genet Genomics 282:319–328

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Quail PH (1993) HY8, a new class of Arabidopsis long hypocotyl mutants deficient in functional Phytochrome-A. Plant Cell 5:39–48

    PubMed  CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The Constans gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc-finger transcription factors. Cell 80:847–857

    Article  PubMed  CAS  Google Scholar 

  • Qiu S, Adema CM, Lane T (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33:1834–1847

    Article  PubMed  CAS  Google Scholar 

  • Sablok G, Pérez-Quintero ÁL, Hassan M, Tatarinova TV, López C (2011) Artificial microRNAs (amiRNAs) engineering—on how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophys Res Commun 406(3):315–319

    Article  PubMed  CAS  Google Scholar 

  • Samach A, Onouchi H, Gold SE et al (2000) Distinct roles of Constans target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  PubMed  CAS  Google Scholar 

  • Santel A, Aleku M, Keil O et al (2006) A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 13:1222–1234

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Takechi K, Sodmergen, Murata M, Motoyoshi F, Sakamoto W (2000) The yellow variegated (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant and Cell Physiol 41:1334–1346

  • Thomas CL, Jones L, Baulcombe DC, Maule AJ (2001) Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus X vector. Plant J 25:417–425

    Article  PubMed  CAS  Google Scholar 

  • Van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia—addition of a limited number of gene copies may lead to a suppression of gene-expression. Plant Cell 2:291–299

    PubMed  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield A et al (1999) The Transparent Testa Glabra1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham HW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2:70–75

    Article  PubMed  CAS  Google Scholar 

  • Zaltsman A, Ori N, Adam Z (2005) Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell 17:2782–2790

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann TS, Lee ACH, Akinc A et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA-NIFA Grant (Award no. 2010-38821-21540), and ABI-Arkansas Division of Agriculture grant. We thank Chase Purnell for technical assistance.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Aydın Akbudak or Scott J. Nicholson.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture. USDA is an equal opportunity provider and employer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1 Transgene constructs SJN02 and SJN04

Supplemental Fig. 2 a Seedlings grown in FRc and transferred to white light. PHYA suppression results in long hypocotyls. PHYA silencing was observed among T2 progeny of the SJN02 transgenic lines, exemplified by 02-2. Intermediate seedlings are also apparent within the heterozygous population. b Bushy plant growth due to BRI1 silencing in lines B9 and B10 c Anomalies in gynoecium development due to AP1 silencing. Two AP1 silenced lines, A1 and A4, are presented along with COL (WT). d Reduction in leaf number and early senescing due to CO silencing.

Supplementary material 1 (PPTX 45 kb)

Supplementary material 2 (PPTX 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbudak, M.A., Nicholson, S.J. & Srivastava, V. Suppression of Arabidopsis genes by terminator-less transgene constructs. Plant Biotechnol Rep 7, 415–424 (2013). https://doi.org/10.1007/s11816-013-0278-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-013-0278-z

Keywords

Navigation