Skip to main content

Advertisement

Log in

Feeding the extra billions: strategies to improve crops and enhance future food security

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The ability to feed an expanding world population poses one of the greatest challenges to mankind in the future. Accompanying the increased demand for food by the expected nine billion inhabitants of Earth in 2050 will be a continual decrease in arable land area, together with a decline in crop yield due to a variety of stresses. For these formidable challenges to be met, future crops should not only by high-yielding, but also stress-tolerant and disease-resistant. In this review, we highlight the importance of genetic engineering as an indispensable tool to generate just such future crops. We briefly discuss strategies and available tools for biotechnological crop improvement and identify selected examples of candidate genes that may be manipulated so that current biological maxima in yield may be surpassed by comfortable margins. Future prospects and the necessity for basic research aimed at identifying novel target genes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008a) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008b) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  PubMed  CAS  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol (Stuttgart) 8:314–325

    Article  CAS  Google Scholar 

  • Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J 17:547–556

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136

    Article  CAS  Google Scholar 

  • Divi U, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  PubMed  CAS  Google Scholar 

  • Dong K, Chen B, Li Z, Dong Y, Wang H (2010) A characterization of rice pests and quantification of yield losses in the japonica rice zone of Yunnan, China. Crop Prot 29:603–611

    Article  Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:2–9

    Article  PubMed  CAS  Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant–pathogen interactions. Plant Physiol 150:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  PubMed  CAS  Google Scholar 

  • Godge MR, Kumar D, Kumar PP (2008) Arabidopsis HOG1 gene and its petunia homolog PETCBP act as key regulators of yield parameters. Plant Cell Rep 27:1497–1507

    Article  PubMed  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant–insect interactions. J Plant Growth Regul 23:238–245

    CAS  Google Scholar 

  • Halliday KJ, Koornneef M, Whitelam GC (1994) Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiol 104:1311–1315

    PubMed  CAS  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: How an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339

    Article  PubMed  CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 11:130–137

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243–2254

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  PubMed  CAS  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98:8909–8914

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sakamoto T, Kayano T, Tanaka H, Ashikari M, Matsuoka M (2002) Modification of rice plant height by suppressing the height-controlling gene, D18, in rice. Breed Sci 52:215–218

    Article  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku S-J, Cho C, Lee DJ, Lee E-J, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  PubMed  CAS  Google Scholar 

  • Jin LG, Li H, Liu JY (2010) Molecular characterization of three ethylene responsive element binding factor genes from cotton. J Integr Plant Biol 52:485–495

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    Article  PubMed  CAS  Google Scholar 

  • Kawata M, Nakajima T, Yamamoto T, Mori K, Oikawa T, Fukumoto F, Kuroda S (2003) Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides. JARQ 37:71–76

    CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14:373–382

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Kang JY, Kim SY (2004a) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004b) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191–204

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  PubMed  CAS  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523

    Article  PubMed  CAS  Google Scholar 

  • Morinaka Y (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones JDG (2004) The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655

    Article  PubMed  CAS  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production––losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol Plantarum 138:10–21

    Google Scholar 

  • Panthee DR, Chen F (2010) Genomics of fungal disease resistance in tomato. Curr Genomics 11:30–39

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  PubMed  CAS  Google Scholar 

  • Rafalski JA (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–654

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    Article  PubMed  CAS  Google Scholar 

  • Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6:263–284

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T (2006) Phytohormones and rice crop yield: strategies and opportunities for genetic improvement. Transgenic Res 15:399–404

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2005) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109

    Article  PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Schwechheimer C, Willige BC (2009) Shedding light on gibberellic acid signalling. Curr Opin Plant Biol 12:57–62

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283:1455c

    Article  Google Scholar 

  • Spoel SH, Dong X (2008) Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe 3:348–351

    Article  PubMed  CAS  Google Scholar 

  • Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889–2903

    Article  PubMed  CAS  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669–680

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  PubMed  CAS  Google Scholar 

  • To JPC, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10:447–462

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xue Y, Li J (2005) Towards molecular breeding and improvement of rice in China. Trends Plant Sci 10:610–614

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  Google Scholar 

  • Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625–634

    PubMed  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241–249

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang H, Quan R, Wang X-C, Huang R (2009) Transcriptional regulation of the Ethylene Response Factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash P. Kumar.

Additional information

P. Stamm and R. Ramamoorthy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamm, P., Ramamoorthy, R. & Kumar, P.P. Feeding the extra billions: strategies to improve crops and enhance future food security. Plant Biotechnol Rep 5, 107–120 (2011). https://doi.org/10.1007/s11816-011-0169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-011-0169-0

Keywords

Navigation