Skip to main content
Log in

Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in T1 and T2 transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. T2 transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abei H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase, a hydrogen peroxide scavenging-enzyme in plants. Plant Physiol 85:235–241

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle LL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:396 307–319

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Kaku N, Hibino T, Tanaka Y, Ishikawa H, Araki E, Takabe T, Takabe T (2000) Effects of overexpression of Escherichia coli katE and bet genes on the tolerance for salt stress in a freshwater cyanobacterium Synechococcus sp. PCC 7942. Plant Sci 159:281–288

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Qian Q, Zhu D (2005) Expression of a calcineurin gene improves salt stress tolerance in transgenic rice. Plant Mol Biol 58(4):483–495

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (1997) Regulation of catalase in Arabidopsis. Free Radic Biol Med 23:489–496

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohsima M, Murakami T, Gotoh Y, Katayose Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, Shigeoka S (2000) Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol 41:311–320

    PubMed  CAS  Google Scholar 

  • Ngo TT, Lenhoff HM (1980) A sensitive and versatile chromogenic assay for peroxidase-coupled reactions. Anal Biochem 105:389–397

    Article  PubMed  CAS  Google Scholar 

  • Nagamiya K, Motohashi T, Nakao K, Prodhan SH, Hattori E, Hirose S, Ozawa K, Ohkawa Y, Takabe T, Takabe T, Komamine A (2007) Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol Rep 1(1):49–55

    Article  Google Scholar 

  • Ossowski I, Mulvey MR, Leco PA, Borys A, Loewen PC (1991) Nucleotide sequence of Escherichia coli katE, which encodes catalase HPІІ. J Bacteriol 173:514–520

    Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160(5):869–875

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993) Overexpression of superoxide dismutase protects plants oxidative stress. Plant Physiol 103:1067–1073

    CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa K, Yokota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplast. FEBS Lett 428:47–52

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Yokota A, Shigeoka S (1995) Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell Physiol 36:1089–1095

    CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, M Montagu, Inze D, Camp WV (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16(16):4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Rahman SM, Kawasaki M, Taniguchi M, Miyake H (2004) Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultrastructure in rice leaf segments (Oryza sativa L.). Plant Prod Sci 7:292–300

    Article  CAS  Google Scholar 

  • Zeba IS, Salam MA (2000) Growing rice in saline soils: biotechnological approaches for Bangladesh. In: The biotechnology directory. Macmillan, New York

Download references

Acknowledgments

We thank Prof. Tetsuko Takabe, Nagoya University, Nagoya, Japan and Prof. Teruhiro Takabe, Meijo University, Nagoya, Japan for providing pAMkatE72. We also thank Dr Sakiko Hirose, Dr Kenjiro Ozawa, Dr Yasunobu Ohkawa, National Institute of Agrobiological Sciences, Tsukuba, Japan for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Motohashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriwaki, T., Yamamoto, Y., Aida, T. et al. Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnol Rep 2, 41–46 (2008). https://doi.org/10.1007/s11816-008-0046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-008-0046-7

Keywords

Navigation