Skip to main content
Log in

Catalysing Sustainability with Keratin-Derived Adsorbent Materials for Enhanced Heavy Metal Remediation

  • Review Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Heavy metal contamination has been a significant issue globally often interconnected with broader environmental and social factors. Biosorption, emerged as a potential solution to sequester heavy metal ions using range of ceramics and polymers lean towards natural polymers for sustainability. Among these natural polymers, keratin-based adsorbents have attained attention due to its structural features. Though numerous review articles have reported the use of keratin for adsorption of toxic pollutants and methods to develop materials with desirable physical, chemical, thermal and mechanical properties, the present review particularly discuss the structural–functional relation to explore the modification and tenability to improve its adsorption efficiency for heavy metals. Their interactions with functional groups present on keratin molecule and further, different extrinsic aspects such as extraction methods’ impact on removal efficiency of keratin and underlying mechanisms elucidated through various adsorption model employed by researchers is also discussed. This review also reports studies on improving the inherent heavy metal adsorption capacity of keratin by compositing with other polymers. Additionally, the functionalization of keratin molecule has been explored for not only improving the adsorption capacity but also the morphological characteristics of the materials developed. Overall, the article highlights the advancements in keratin-based materials as effective adsorbents for heavy metal removal from wastewater and the need for further research to optimize their properties and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. M.O. Fashola, V.M. Ngole-Jeme, O.O. Babalola, Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int. J. Environ. Res. Public Health 13, 1047 (2016). https://doi.org/10.3390/ijerph13111047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. V. Vijaya Kumar, S. Rimjhim, S. Achary Garagu, N. Nayakkam Valappil, R. Prasanna Rakhavan, Heavy metal contamination, distribution and source apportionment in the sediments from Kavvayi Estuary, South-west coast of India. Total Environ. Res. Themes 3–4, 100019 (2022). https://doi.org/10.1016/j.totert.2022.100019

    Article  Google Scholar 

  3. X. Liu, J. Zhang, X. Huang, L. Zhang, C. Yang, E. Li, Z. Wang, Heavy metal distribution and bioaccumulation combined with ecological and human health risk evaluation in a typical Urban Plateau Lake, Southwest China. Front. Environ. Sci. (2022). https://doi.org/10.3389/fenvs.2022.814678

    Article  Google Scholar 

  4. K. Perumal, J. Antony, S. Muthuramalingam, Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India. Environ. Sci. Eur. 33, 63 (2021). https://doi.org/10.1186/s12302-021-00501-2

    Article  CAS  Google Scholar 

  5. Q. Zhou, N. Yang, Y. Li, B. Ren, X. Ding, H. Bian, X. Yao, Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 22, e00925 (2020). https://doi.org/10.1016/j.gecco.2020.e00925

    Article  Google Scholar 

  6. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7, 60–72 (2014). https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H.N.M.E. Mahmud, A.K.O. Huq, R. Binti Yahya, The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 6, 14778–14791 (2016). https://doi.org/10.1039/C5RA24358K

    Article  CAS  Google Scholar 

  8. F.M. Pang, P. Kumar, T.T. Teng, A.K. Mohd Omar, K.L. Wasewar, Removal of lead, zinc and iron by coagulation–flocculation. J. Taiwan Inst. Chem. Eng. 42, 809–815 (2011). https://doi.org/10.1016/j.jtice.2011.01.009

    Article  CAS  Google Scholar 

  9. G. Al-Enezi, M.F. Hamoda, N. Fawzi, Ion exchange extraction of heavy metals from wastewater sludges. J. Environ. Sci. Health Part A Tox Hazard. Subst. Environ. Eng. 39, 455–464 (2004). https://doi.org/10.1081/ese-120027536

    Article  CAS  Google Scholar 

  10. Y. Zhang, X. Duan, Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci. Technol. 81, 1130–1136 (2020). https://doi.org/10.2166/wst.2020.208

    Article  CAS  PubMed  Google Scholar 

  11. Y. Pu, T. Qiang, G. Li, X. Ruan, L. Ren, Efficient adsorption of low-concentration uranium from aqueous solutions by biomass composite aerogel. Ecotoxicol. Environ. Saf. 259, 115053 (2023). https://doi.org/10.1016/j.ecoenv.2023.115053

    Article  CAS  PubMed  Google Scholar 

  12. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Removal of heavy metal ions by nanofiltration. Desalination 315, 2–17 (2013). https://doi.org/10.1016/j.desal.2012.05.022

    Article  CAS  Google Scholar 

  13. A.H. Algureiri, Y.R. Abdulmajeed, Removal of heavy metals from industrial wastewater by using RO membrane. Iraqi J. Chem. Pet. Eng. 17, 125–136 (2016). https://doi.org/10.31699/IJCPE.2016.4.12

    Article  Google Scholar 

  14. Z. Wang, Z. Tan, H. Li, S. Yuan, Y. Zhang, Y. Dong, Direct current electrochemical method for removal and recovery of heavy metals from water using straw biochar electrode. J. Clean. Prod. 339, 130746 (2022). https://doi.org/10.1016/j.jclepro.2022.130746

    Article  CAS  Google Scholar 

  15. R.K. Donato, A. Mija, Keratin associations with synthetic biosynthetic and natural polymers: an extensive review. Polymers 12, 32 (2019). https://doi.org/10.3390/polym12010032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Global major human hair export share in 2021, Statista (n.d.) https://www.statista.com/statistics/960987/global-leading-exporters-of-human-hair-export-share/. Accessed 13 Aug 2023

  17. R.C. de Guzman, S.M. Tsuda, M.-T.N. Ton, X. Zhang, A.R. Esker, M.E. Van Dyke, Binding interactions of keratin-based hair fiber extract to gold, keratin, and BMP-2. PLoS ONE 10, e0137233 (2015). https://doi.org/10.1371/journal.pone.0137233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Human hair is being used to clean up oil spills|CNN, (n.d.) https://edition.cnn.com/2022/05/19/world/oil-spills-human-hair-matter-of-trust-spc-scn-intl-c2e/index.html. Accessed 4 June 2023

  19. A.G. Stewart, R. Collie, Keratinous materials as novel absorbent systems for toxic pollutants. Def. Sci. J. 64, 209–221 (2014). https://doi.org/10.14429/dsj.64.7319

    Article  CAS  Google Scholar 

  20. S. Mowafi, M.A. Taleb, C. Vineis, H. El-Sayed, Structure and potential applications of polyamide 6/protein electro-spun nanofibrous mats in sorption of metal ions and dyes from industrial effluents. J. Appl. Res. Technol. 19, 322–335 (2021). https://doi.org/10.22201/icat.24486736e.2021.19.4.1436

    Article  Google Scholar 

  21. K. Roy, T.K. Dey, M. Jamal, R. Rathanasamy, M. Chinnasamy, Md.E. Uddin, Fabrication of graphene oxide–keratin–chitosan nanocomposite as an adsorbent to remove turbidity from tannery wastewater. Water Sci. Eng. 16, 184–191 (2023). https://doi.org/10.1016/j.wse.2022.12.003

    Article  Google Scholar 

  22. M. Gore, L. Khurana, R. Dixit, K. Balasubramanian, Keratin-nylon 6 engineered microbeads for adsorption of Th (IV) ions from liquid effluents. J. Environ. Chem. Eng. 5, 5655–5667 (2017). https://doi.org/10.1016/j.jece.2017.10.048

    Article  CAS  Google Scholar 

  23. M.D. Manrique-Juárez, A.L. Martínez-Hernández, O.F. Olea-Mejía, J. Flores-Estrada, J.L. Rivera-Armenta, C. Velasco-Santos, Polyurethane-keratin membranes: structural changes by isocyanate and pH, and the repercussion on Cr(VI) removal. Int. J. Polym. Sci. 2013, e892547 (2013). https://doi.org/10.1155/2013/892547

    Article  CAS  Google Scholar 

  24. H.H. Bragulla, D.G. Homberger, Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 214, 516 (2009). https://doi.org/10.1111/j.1469-7580.2009.01066.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L. Navone, R. Speight, Understanding the dynamics of keratin weakening and hydrolysis by proteases. PLoS ONE 13, e0202608 (2018). https://doi.org/10.1371/journal.pone.0202608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. X. Pan, R.P. Hobbs, P.A. Coulombe, The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr. Opin. Cell Biol. 25, 47–56 (2013). https://doi.org/10.1016/j.ceb.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  27. L. Li, S. Yang, T. Chen, L. Han, G. Lian, Investigation of pH effect on cationic solute binding to keratin and partition to hair. Int. J. Cosmet. Sci. 40, 93–102 (2018). https://doi.org/10.1111/ics.12441

    Article  CAS  PubMed  Google Scholar 

  28. H. Huang, Y. Wang, Y. Zhang, Z. Niu, X. Li, Amino-functionalized graphene oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) removal from industrial wastewater. Open Chem. 18, 97–107 (2020). https://doi.org/10.1515/chem-2020-0009

    Article  CAS  Google Scholar 

  29. F. Banat, S. Al-Asheh, D. Al-Rousan, Comparison between different keratin-composed biosorbents for the removal of heavy metal ions from aqueous solutions. Adsorpt. Sci. Technol. 20, 393–416 (2002). https://doi.org/10.1260/02636170260295579

    Article  CAS  Google Scholar 

  30. H. Zhang, F. Carrillo, M. López-Mesas, C. Palet, Valorization of keratin biofibers for removing heavy metals from aqueous solutions. Text. Res. J. 89, 1153–1165 (2019). https://doi.org/10.1177/0040517518764008

    Article  CAS  Google Scholar 

  31. H. Diwan, M.K. Sah, Exploring the potential of keratin-based biomaterials in orthopedic tissue engineering: a comprehensive review. Emergent Mater. 6, 1441–1460 (2023). https://doi.org/10.1007/s42247-023-00545-5

    Article  Google Scholar 

  32. L. Tombolato, E.E. Novitskaya, P.-Y. Chen, F.A. Sheppard, J. McKittrick, Microstructure, elastic properties and deformation mechanisms of horn keratin. Acta Biomater. 6, 319–330 (2010). https://doi.org/10.1016/j.actbio.2009.06.033

    Article  CAS  PubMed  Google Scholar 

  33. T. Tesfaye, B. Sithole, D. Ramjugernath, V. Chunilall, Valorisation of chicken feathers: characterisation of physical properties and morphological structure. J. Clean. Prod. 149, 349–365 (2017). https://doi.org/10.1016/j.jclepro.2017.02.112

    Article  Google Scholar 

  34. S.S. Adav, R.S. Subbaiaih, S.K. Kerk, A.Y. Lee, H.Y. Lai, K.W. Ng, S.K. Sze, A. Schmidtchen, Studies on the proteome of human hair - identification of histones and deamidated keratins. Sci. Rep. 8, 1599 (2018). https://doi.org/10.1038/s41598-018-20041-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. F.-C. Yang, Y. Zhang, M.C. Rheinstädter, The structure of people’s hair. PeerJ 2, e619 (2014). https://doi.org/10.7717/peerj.619

    Article  PubMed  PubMed Central  Google Scholar 

  36. Y. Yu, W. Yang, B. Wang, M.A. Meyers, Structure and mechanical behavior of human hair. Mater. Sci. Eng. C 73, 152–163 (2017). https://doi.org/10.1016/j.msec.2016.12.008

    Article  CAS  Google Scholar 

  37. H. Gong, H. Zhou, R.H.J. Forrest, S. Li, J. Wang, J.M. Dyer, Y. Luo, J.G.H. Hickford, Wool keratin-associated protein genes in sheep—a review. Genes 7, 24 (2016). https://doi.org/10.3390/genes7060024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. B. Wang, W. Yang, J. McKittrick, M.A. Meyers, Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76, 229–318 (2016). https://doi.org/10.1016/j.pmatsci.2015.06.001

    Article  CAS  Google Scholar 

  39. P. Kakkar, B. Madhan, G. Shanmugam, Extraction and characterization of keratin from bovine hoof: a potential material for biomedical applications. Springerplus 3, 596 (2014). https://doi.org/10.1186/2193-1801-3-596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. T. Lingham-Soliar, Microstructural tissue-engineering in the rachis and barbs of bird feathers. Sci. Rep. 7, 45162 (2017). https://doi.org/10.1038/srep45162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D.A.D. Parry, Structures of the ß-keratin filaments and keratin intermediate filaments in the epidermal appendages of birds and reptiles (Sauropsids). Genes 12, 591 (2021). https://doi.org/10.3390/genes12040591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Zou, J. Zhou, L. Xu, J. Song, S. Liu, X. Li, An engineering perspective on the microstructure and compression properties of the seagull Larus argentatus feather rachis. Micron 126, 102735 (2019). https://doi.org/10.1016/j.micron.2019.102735

    Article  PubMed  Google Scholar 

  43. Y. Zhang, W. Huang, C. Hayashi, J. Gatesy, J. McKittrick, Microstructure and mechanical properties of different keratinous horns. J. R. Soc. Interface. 15, 20180093 (2018). https://doi.org/10.1098/rsif.2018.0093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Misra, P. Kar, G. Priyadarshan, C. Licata, Keratin protein nano-fiber for removal of heavy metals and contaminants. MRS Online Proc. Libr. 702, 211 (2011). https://doi.org/10.1557/PROC-702-U2.1.1

    Article  Google Scholar 

  45. T. Nikiforova, V. Kozlov, M. Islyaikin, Sorption of d-metal cations by keratin from aqueous solutions. J. Environ. Chem. Eng. 7, 103417 (2019). https://doi.org/10.1016/j.jece.2019.103417

    Article  CAS  Google Scholar 

  46. J. Kong, Q. Yue, S. Sun, B. Gao, Y. Kan, Q. Li, Y. Wang, Adsorption of Pb(II) from aqueous solution using keratin waste – hide waste: equilibrium, kinetic and thermodynamic modeling studies. Chem. Eng. J. 241, 393–400 (2014). https://doi.org/10.1016/j.cej.2013.10.070

    Article  CAS  Google Scholar 

  47. S.A. Olawale, A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, C.C. Okafor, L. Sellaoui, M. Badawi, S. Mignardi, Thermodynamics and mechanism of the adsorption of heavy metal ions on keratin biomasses for wastewater detoxification. Adsorpt. Sci. Technol. 2022, 1–13 (2022). https://doi.org/10.1155/2022/7384924

    Article  CAS  Google Scholar 

  48. L. Mahdavian, Simulation of heavy metal removal by α-keratin nano-structure of Human hair from environment. Env. Treat Tech 2, 31–35 (2014)

    Google Scholar 

  49. B.-C. Condurache, C. Cojocaru, P. Samoila, S.F. Cosmulescu, G. Predeanu, A.-C. Enache, V. Harabagiu, Oxidized biomass and its usage as adsorbent for removal of heavy metal ions from aqueous solutions. Molecules 27, 6119 (2022). https://doi.org/10.3390/molecules27186119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. H.K. Agbovi, L.D. Wilson, 1 - Adsorption processes in biopolymer systems: fundamentals to practical applications, in Natural polymers-based green adsorbents for water treatment. ed. by S. Kalia (Elsevier, Amsterdam, 2021), pp.1–51. https://doi.org/10.1016/B978-0-12-820541-9.00011-9

    Chapter  Google Scholar 

  51. X. Zhang, Y. Guo, W. Li, J. Zhang, H. Wu, N. Mao, H. Zhang, Magnetically recyclable wool keratin modified magnetite powders for efficient removal of Cu2+ ions from aqueous solutions. Nanomaterials 11, 1068 (2021). https://doi.org/10.3390/nano11051068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. H. Zhang, F. Carrillo-Navarrete, M. López-Mesas, C. Palet, Use of chemically treated human hair wastes for the removal of heavy metal ions from water. Water 12, 1263 (2020). https://doi.org/10.3390/w12051263

    Article  CAS  Google Scholar 

  53. A. Aluigi, A. Corbellini, F. Rombaldoni, G. Mazzuchetti, Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text. Res. J. 83(15), 1574–1586 (2013). https://doi.org/10.1177/0040517512467060

    Article  CAS  Google Scholar 

  54. I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, V. Hernández-Montoya, M.A. Montes-Morán, H.E. Reynel-Avila, Batch and column studies of Zn2+ removal from aqueous solution using chicken feathers as sorbents. Chem. Eng. J. 167, 67–76 (2011). https://doi.org/10.1016/j.cej.2010.11.107

    Article  CAS  Google Scholar 

  55. F. Dhaouadi, L. Sellaoui, M. Badawi, H.E. Reynel-Ávila, D.I. Mendoza-Castillo, J.E. Jaime-Leal, A. Bonilla-Petriciolet, A.B. Lamine, Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J. Mol. Liq. 319, 114168 (2020). https://doi.org/10.1016/j.molliq.2020.114168

    Article  CAS  Google Scholar 

  56. Md.A. Hossain, R. Sultana, Md.A. Moktadir, Md.A. Hossain, A novel bio-adsorbent development from tannery solid waste derived biodegradable keratin for the removal of hazardous chromium: a cleaner and circular economy approach. J. Clean. Prod. 413, 137471 (2023). https://doi.org/10.1016/j.jclepro.2023.137471

    Article  CAS  Google Scholar 

  57. H.E. Reynel-Avila, A. Bonilla-Petriciolet, G. De La Rosa, Analysis and modeling of multicomponent sorption of heavy metals on chicken feathers using Taguchi’s experimental designs and artificial neural networks. Desalin. Water Treat. 55, 1885–1899 (2015). https://doi.org/10.1080/19443994.2014.937762

    Article  CAS  Google Scholar 

  58. P. Kar, M. Misra, Use of keratin fiber for separation of heavy metals from water. J. Chem. Technol. Biotechnol. 79, 1313–1319 (2004). https://doi.org/10.1002/jctb.1132

    Article  CAS  Google Scholar 

  59. M. Mir, Adsorption of heavy metals by chopped human hair: an equilibrium and kinetic study. Asian J. Chem. 35, 1458–1462 (2023). https://doi.org/10.14233/ajchem.2023.27653

    Article  CAS  Google Scholar 

  60. O.B. Omitola, M.N. Abonyi, K.G. Akpomie, F.A. Dawodu, Adams-Bohart, Yoon-Nelson, and Thomas modeling of the fix-bed continuous column adsorption of amoxicillin onto silver nanoparticle-maize leaf composite. Appl Water Sci 12, 1–9 (2022). https://doi.org/10.1007/s13201-022-01624-4

    Article  CAS  Google Scholar 

  61. C. Henry, Thomas, heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 66, 1664–1666 (1994). https://doi.org/10.1021/ja01238a017

    Article  Google Scholar 

  62. S. Chen, Q. Yue, B. Gao, Q. Li, X. Xu, K. Fu, Adsorption of hexavalent chromium from aqueous solution by modified corn stalk: a fixed-bed column study. Bioresour. Technol. 113, 114–120 (2012). https://doi.org/10.1016/j.biortech.2011.11.110

    Article  CAS  PubMed  Google Scholar 

  63. G. Klein, Principles of adsorption and adsorption processes, vol. 433 (John Wiley and Sons, New York, 1985)

    Google Scholar 

  64. H. Hammud, A. Shmait, N. Hourani, Removal of malachite green from water using hydrothermally carbonized pine needles. RSC Adv. 5(11), 7909–7920 (2015). https://doi.org/10.1039/C4RA15505J

    Article  CAS  Google Scholar 

  65. R.M. Clark, Evaluating the cost and performance of field-scale granular activated carbon systems. Environ. Sci. Technol. 21, 573–580 (1987). https://doi.org/10.1021/es00160a008

    Article  CAS  PubMed  Google Scholar 

  66. E.B. Kurbanoglu, O.F. Algur, Utilization of ram horn hydrolysate as a supplement for recovery of heat- and freeze-injured bacteria. Food Control 17, 238–242 (2006). https://doi.org/10.1016/j.foodcont.2004.11.001

    Article  Google Scholar 

  67. Y.A.D.T.U.O.A. Nomura, M. Aihara, D. Nakajima, S.C.T.F.I.C.L. Kenjou, M.T.F.I.C.L. Tsukuda, Y.C.T.F.I.C.L. Tsuda, Process for producing solubilized keratin, EP1731528A1, 2006. https://patents.google.com/patent/EP1731528A1/da. Accessed 10 July 2023

  68. A. Ghosh, S. Clerens, S. Deb-Choudhury, J.M. Dyer, Thermal effects of ionic liquid dissolution on the structures and properties of regenerated wool keratin. Polym. Degrad. Stab. 108, 108–115 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.06.007

    Article  CAS  Google Scholar 

  69. C.R. Chilakamarry, S. Mahmood, S.N.B.M. Saffe, M.A.B. Arifin, A. Gupta, M.Y. Sikkandar, S.S. Begum, B. Narasaiah, Extraction and application of keratin from natural resources: a review. 3 Biotech 11, 220 (2021). https://doi.org/10.1007/s13205-021-02734-7

    Article  PubMed  PubMed Central  Google Scholar 

  70. A. Aluigi, C. Tonetti, C. Vineis, A. Varesano, C. Tonin, R. Casasola, Study on the adsorption of chromium (VI) by hydrolyzed keratin/polyamide 6 blend nanofibres. J. Nanosci. Nanotechnol. 12, 7250–7259 (2012). https://doi.org/10.1166/jnn.2012.6491

    Article  CAS  PubMed  Google Scholar 

  71. M.L. Peralta Ramos, G. Galaburri, J.A. González, C.J. Pérez, M.E. Villanueva, G.J. Copello, Influence of GO reinforcement on keratin based smart hydrogel and its application for emerging pollutants removal. J. Environ. Chem. Eng. 6, 7021–7028 (2018). https://doi.org/10.1016/j.jece.2018.11.011

    Article  CAS  Google Scholar 

  72. N.D. Tissera, R.N. Wijesena, H. Yasasri, K.M.N. de Silva, R.M. de Silva, Fibrous keratin protein bio micro structure for efficient removal of hazardous dye waste from water: surface charge mediated interfaces for multiple adsorption desorption cycles. Mater. Chem. Phys. 246, 122790 (2020). https://doi.org/10.1016/j.matchemphys.2020.122790

    Article  CAS  Google Scholar 

  73. M.W. Donner, M. Arshad, A. Ullah, T. Siddique, Unravelled keratin-derived biopolymers as novel biosorbents for the simultaneous removal of multiple trace metals from industrial wastewater. Sci. Total. Environ. 647, 1539–1546 (2019). https://doi.org/10.1016/j.scitotenv.2018.08.085

    Article  CAS  PubMed  Google Scholar 

  74. F.S. Hussain, N. Memon, Z. Khatri, S. Memon, Solid waste-derived biodegradable keratin sponges for removal of chromium: a circular approach for waste management in leather industry. Environ. Technol. Innov. 20, 101120 (2020). https://doi.org/10.1016/j.eti.2020.101120

    Article  CAS  Google Scholar 

  75. S. Perța-Crișan, C. Ștefan Ursachi, S. Gavrilaș, F. Oancea, F.-D. Munteanu, Closing the loop with keratin-rich fibrous materials. Polymers 13, 1896 (2021). https://doi.org/10.3390/polym13111896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. E.M. Brown, K. Pandya, M.M. Taylor, C.-K. Liu, Comparison of methods for extraction of keratin from waste wool. Agric. Sci. 07, 670–679 (2016). https://doi.org/10.4236/as.2016.710063

    Article  CAS  Google Scholar 

  77. A. Schindl, M.L. Hagen, S. Muzammal, H.A.D. Gunasekera, A.K. Croft, Proteins in ionic liquids: reactions, applications, and futures. Front. Chem. 7, 347 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. E. Pulidori, S. Micalizzi, E. Bramanti, L. Bernazzani, C. Duce, C. De Maria, F. Montemurro, C. Pelosi, A. De Acutis, G. Vozzi, M.R. Tinè, One-pot process: microwave-assisted keratin extraction and direct electrospinning to obtain keratin-based bioplastic. Int. J. Mol. Sci. 22, 9597 (2021). https://doi.org/10.3390/ijms22179597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. M. Zoccola, A. Aluigi, A. Patrucco, C. Vineis, F. Forlini, P. Locatelli, M.C. Sacchi, C. Tonin, Microwave-assisted chemical-free hydrolysis of wool keratin. Text. Res. J. 82, 2006–2018 (2012). https://doi.org/10.1177/0040517512452948

    Article  CAS  Google Scholar 

  80. S. Wei, X. Hou, L. Liu, Y. Tian, W. Li, H. Xu, Improving the adsorption properties of keratin-based goat hair toward reactive dyes in dyeing wastewater by steam explosion. J. Nat. Fibers 20, 2157362 (2023). https://doi.org/10.1080/15440478.2022.2157362

    Article  CAS  Google Scholar 

  81. N. Eslahi, F. Dadashian, N.H. Nejad, An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep. Biochem. Biotechnol. 43, 624–648 (2013). https://doi.org/10.1080/10826068.2013.763826

    Article  CAS  PubMed  Google Scholar 

  82. K. Pakshir, M. Rahimi Ghiasi, K. Zomorodian, A.R. Gharavi, Isolation and molecular identification of keratinophilic fungi from public parks soil in Shiraz, Iran. BioMed Res. Int. 2013, 619576 (2013). https://doi.org/10.1155/2013/619576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. P. Ramnani, R. Gupta, Keratinases vis-à-vis conventional proteases and feather degradation. World J. Microbiol. Biotechnol. 23, 1537–1540 (2007). https://doi.org/10.1007/s11274-007-9398-3

    Article  CAS  Google Scholar 

  84. F. Pan, Y. Xiao, L. Zhang, J. Zhou, C. Wang, W. Lin, Leather wastes into high-value chemicals: keratin-based retanning agents via UV-initiated polymerization. J. Clean. Prod. 383, 135492 (2023). https://doi.org/10.1016/j.jclepro.2022.135492

    Article  CAS  Google Scholar 

  85. A. Aluigi, C. Tonetti, C. Vineis, C. Tonin, G. Mazzuchetti, Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur. Polym. J. 47, 1756–1764 (2011). https://doi.org/10.1016/j.eurpolymj.2011.06.009

    Article  CAS  Google Scholar 

  86. S. Feroz, N. Muhammad, J. Ranayake, G. Dias, Keratin - based materials for biomedical applications. Bioact. Mater. 5, 496–509 (2020). https://doi.org/10.1016/j.bioactmat.2020.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  87. T. Tanabe, N. Okitsu, A. Tachibana, K. Yamauchi, Preparation and characterization of keratin–chitosan composite film. Biomaterials 23, 817–825 (2002). https://doi.org/10.1016/S0142-9612(01)00187-9

    Article  CAS  PubMed  Google Scholar 

  88. H. Mori, M. Hara, Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl. 91, 19–25 (2018). https://doi.org/10.1016/j.msec.2018.05.021

    Article  CAS  PubMed  Google Scholar 

  89. P.D. Rao, C.U. Kiran, K.E. Prasad, Effect of fiber loading and void content on tensile properties of keratin based randomly oriented human hair fiber composites. Int. J. Compos. Mater. 7, 136–143 (2017)

    CAS  Google Scholar 

  90. C. Xi, Z. Mingyue, Z. Yiyang, L. He, L. Hongling, Robust waterborne polyurethane/wool keratin/silk sericin freeze-drying composite membrane for heavy metal ions adsorption. J. Donghua Univ. 38, 484–491 (2021). https://doi.org/10.19884/j.1672-5220.202103010

    Article  CAS  Google Scholar 

  91. K. Song, H. Xu, L. Xu, K. Xie, Y. Yang, Cellulose nanocrystal-reinforced keratin bioadsorbent for effective removal of dyes from aqueous solution. Bioresour. Technol. 232, 254–262 (2017). https://doi.org/10.1016/j.biortech.2017.01.070

    Article  CAS  PubMed  Google Scholar 

  92. K. Katoh, M. Shibayama, T. Tanabe, K. Yamauchi, Preparation and properties of keratin-poly(vinyl alcohol) blend fiber. J. Appl. Polym. Sci. 91, 756–762 (2004). https://doi.org/10.1002/app.13236

    Article  CAS  Google Scholar 

  93. R. Bassi, S.O. Prasher, B.K. Simpson, Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep. Sci. Technol. 35, 547–560 (2000). https://doi.org/10.1081/SS-100100175

    Article  CAS  Google Scholar 

  94. S.T. Chetan Mahajan, Preparation and evaluation of wool keratin based chitosan nanofibers for air and water filtration. IJIRAEInt. J. Innov. Res. Adv. Eng. 6, 37–44 (2019). https://doi.org/10.5281/zenodo.2576696

    Article  Google Scholar 

  95. K. Guiza, R. Ben Arfi, K. Mougin, C. Vaulot, L. Michelin, L. Josien, G. Schrodj, A. Ghorbal, Development of novel and ecological keratin/cellulose-based composites for absorption of oils and organic solvents. Environ. Sci. Pollut. Res. 28, 46655–46668 (2021). https://doi.org/10.1007/s11356-020-11260-7

    Article  CAS  Google Scholar 

  96. O. Peiravi-Rivash, M. Mashreghi, O. Baigenzhenov, A. Hosseini-Bandegharaei, Producing bacterial nano-cellulose and keratin from wastes to synthesize keratin/cellulose nanobiocomposite for removal of dyes and heavy metal ions from waters and wastewaters. Colloids Surf. Physicochem. Eng. Asp. 656, 130355 (2023). https://doi.org/10.1016/j.colsurfa.2022.130355

    Article  CAS  Google Scholar 

  97. K. Song, X. Qian, X. Li, Y. Zhao, Z. Yu, Fabrication of a novel functional CNC cross-linked and reinforced adsorbent from feather biomass for efficient metal removal. Carbohydr. Polym. 222, 115016 (2019). https://doi.org/10.1016/j.carbpol.2019.115016

    Article  CAS  PubMed  Google Scholar 

  98. C. Kong, X. Zhao, Y. Li, S. Yang, Y.M. Chen, Z. Yang, Ion-induced synthesis of alginate fibroid hydrogel for heavy metal ions removal. Front. Chem. 7, 905 (2020). https://doi.org/10.3389/fchem.2019.00905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. W. Kong, Q. Li, J. Liu, X. Li, L. Zhao, Y. Su, Q. Yue, B. Gao, Adsorption behavior and mechanism of heavy metal ions by chicken feather protein-based semi-interpenetrating polymer networks super absorbent resin. RSC Adv. 6, 83234–83243 (2016). https://doi.org/10.1039/C6RA18180E

    Article  CAS  Google Scholar 

  100. L. Sun, S. Li, K. Yang, J. Wang, Z. Li, N. Dan, Polycaprolactone strengthening keratin/bioactive glass composite scaffolds with double cross-linking networks for potential application in bone repair. J. Leather Sci. Eng. 4, 1 (2022). https://doi.org/10.1186/s42825-021-00077-w

    Article  CAS  Google Scholar 

  101. H. Cao, X. Ma, Z. Wei, Y. Tan, S. Chen, T. Ye, M. Yuan, J. Yu, X. Wu, F. Yin, F. Xu, Behavior and mechanism of the adsorption of lead by an eco-friendly porous double-network hydrogel derived from keratin. Chemosphere 289, 133086 (2022). https://doi.org/10.1016/j.chemosphere.2021.133086

    Article  CAS  PubMed  Google Scholar 

  102. X. Jin, H. Wang, X. Jin, H. Wang, L. Chen, W. Wang, T. Lin, Z. Zhu, Preparation of keratin/PET nanofiber membrane and its high adsorption performance of Cr(VI). Sci. Total. Environ. 710, 135546 (2020). https://doi.org/10.1016/j.scitotenv.2019.135546

    Article  CAS  PubMed  Google Scholar 

  103. R.K. Anantha, S. Kota, Removal of lead by adsorption with the renewable biopolymer composite of feather (Dromaius novaehollandiae) and chitosan (Agaricus bisporus). Environ. Technol. Innov. 6, 11–26 (2016). https://doi.org/10.1016/j.eti.2016.04.004

    Article  Google Scholar 

  104. V. Saucedo-Rivalcoba, A.L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, J.L. Rivera-Armenta, V.M. Castaño, Removal of hexavalent chromium from water by polyurethane-keratin hybrid membranes. Water Air Soil Pollut. 218, 557–571 (2011). https://doi.org/10.1007/s11270-010-0668-6

    Article  CAS  Google Scholar 

  105. C.S. Ki, E.H. Gang, I.C. Um, Y.H. Park, Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J. Membr. Sci. 302, 20–26 (2007). https://doi.org/10.1016/j.memsci.2007.06.003

    Article  CAS  Google Scholar 

  106. E. Aliyev, V. Filiz, M.M. Khan, Y.J. Lee, C. Abetz, V. Abetz, Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris. Nanomaterials 9, 1180 (2019). https://doi.org/10.3390/nano9081180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. E.J.-C. Amieva, J. López-Barroso, A.L. Martínez-Hernández, C. Velasco-Santos, E.J.-C. Amieva, J. López-Barroso, A.L. Martínez-Hernández, C. Velasco-Santos, Graphene-based materials functionalization with natural polymeric biomolecules. Recent Adv. Graphene Res. (2016). https://doi.org/10.5772/64001

    Article  Google Scholar 

  108. M. Zubair, M.S. Roopesh, A. Ullah, Nano-modified feather keratin derived green and sustainable biosorbents for the remediation of heavy metals from synthetic wastewater. Chemosphere 308, 136339 (2022). https://doi.org/10.1016/j.chemosphere.2022.136339

    Article  CAS  PubMed  Google Scholar 

  109. S. Xiaojuan, L. Hongwei, Z. Mei, Preparation and adsorption properties of wool keratin/graphene oxide composites. Wool Text. J. 49, 21–26 (2021). https://doi.org/10.19333/j.mfkj.20200303806

    Article  CAS  Google Scholar 

  110. Z. Hanzlíková, J. Braniša, J. Ondruška, M. Porubská, The uptake and release of humidity by wool irradiated with electron beam. J. Cent. Eur. Agric. 17, 315–324 (2016). https://doi.org/10.5513/JCEA01/17.2.1708

    Article  Google Scholar 

  111. Z. Hanzlíková, J. Braniša, P. Hybler, I. Šprinclová, K. Jomová, M. Porubská, Sorption properties of sheep wool irradiated by accelerated electron beam. Chem. Pap. 70, 1299–1308 (2016). https://doi.org/10.1515/chempap-2016-0062

    Article  CAS  Google Scholar 

  112. Z. Hanzlíková, J. Braniša, K. Jomová, M. Fülöp, P. Hybler, M. Porubská, Electron beam irradiated sheep wool—prospective sorbent for heavy metals in wastewater. Sep. Purif. Technol. 193, 345–350 (2018). https://doi.org/10.1016/j.seppur.2017.10.045

    Article  CAS  Google Scholar 

  113. M.A. Khosa, J. Wu, A. Ullah, Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv. 3, 20800–20810 (2013). https://doi.org/10.1039/C3RA43787F

    Article  CAS  Google Scholar 

  114. M.A. Khosa, A. Ullah, In-situ modification, regeneration, and application of keratin biopolymer for arsenic removal. J. Hazard. Mater. 278, 360–371 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  115. G.L. Do Lago, M.I. Felisberti, pH and thermo-responsive hybrid hydrogels based on PNIPAAM and keratin. Eur. Polym. J. 125, 109538 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109538

    Article  CAS  Google Scholar 

  116. M. Monier, N. Nawar, D.A. Abdel-Latif, Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions. J. Hazard. Mater. 184, 118–125 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.013

    Article  CAS  PubMed  Google Scholar 

  117. M. Monier, D.M. Ayad, A.A. Sarhan, Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. J. Hazard. Mater. 176, 348–355 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.034

    Article  CAS  PubMed  Google Scholar 

  118. A.A. Almoukayed, R. Barhoum, Chemical modification of keratin using Schiff bases to prepare cation exchangers and study their adsorption activity. Heliyon 9, e15567 (2023). https://doi.org/10.1016/j.heliyon.2023.e15567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the host Institute facilities and support for the completion of this review work.

Funding

This review work received no particular grant support from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

SV and MKS designed the content for review work. SV and AA prepared the first draft of manuscript including figures and tables. MKS prepared the final draft of manuscript.

Corresponding author

Correspondence to Mahesh Kumar Sah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashista, S., Arora, A. & Sah, M.K. Catalysing Sustainability with Keratin-Derived Adsorbent Materials for Enhanced Heavy Metal Remediation. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00168-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00168-4

Keywords

Navigation