Skip to main content
Log in

Mass Transfer Kinetics of Ultrasound-Assisted Steam Distillation for the Extraction of Cinnamon Oils

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ultrasound-assisted steam distillation (USD) increased the yield of cinnamon oils extracted from cinnamon leaves by fitting a mass transfer kinetic model during the distillation process. A response surface optimization experiment was conducted to optimize the experimental conditions, which revealed that the order of factors was particle size, ultrasound power, ultrasound time, and pulse ratio. The optimal conditions were determined to be a 40 mesh particle size, 286 W ultrasound power, 31 min ultrasound time, and 7:3 pulse ratio, resulting in a 2.36% yield of cinnamon oils. The yield of cinnamon oils was 0.57% greater in USD than that of steam distillation (SD). The nonsteady-state diffusion model was the most suitable model for the distillation process. The washing coefficient b value of USD was 0.0210, indicating that cinnamon oils were enriched on the particle surface during the initial stages. The diffusion coefficient k of the USD was 0.1770, 40.36% higher than that of the SD, indicating a higher mass transfer efficiency. The main components in cinnamon oils were cinnamaldehyde, coumarin, and 2-methoxycinnamaldehyde. Compared with those of SDs, USDs increased the diffusion coefficient k values of these components increased by 48.51%, 77.67%, and 82.43%, respectively. Ultrasound cavitation improved the mass transfer efficiency of the distillation process, allowing components such as 2-methoxycinnamaldehyde to be more easily enriched in cinnamon oils than in other oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Y :

The yield of cinnamon oil (%)

m :

The mass of cinnamon oil (g)

M :

The mass of cinnamon material (g)

P :

Statistics of the p test

F :

Statistics of the f test

R 2 :

Variance

Adj R 2 :

Adjusted variance

t :

Extraction time (s)

q p :

The average concentration of essential oil in plant particles (kg/m3)

x :

The distance of the essential oil along the diffusion direction to the surface of the cinnamon grain (m)

D F :

Effective diffusion coefficient in plant particles (m2/s)

q :

The extraction rate of essential oil (%)

q 0 :

Initial essential oil content in plant particles (%)

k :

Diffusion coefficient (min1)

b :

Washing coefficient

k 1 :

Mass transfer coefficient of the pseudo first-order dynamic model (min1)

k L :

The coefficient of Langmuir equation mass transfer (min1)

k B :

The coefficient of Boltzmann equation mass transfer (min1)

t 0.5 :

Time required to reach half the total extraction rate (min)

q i :

Total extraction rate of component i at t (%)

q t :

Extraction rate of cinnamon oil at 0 ~ t (%)

C i :

Percentage of component i in qt (%)

References

  1. R. Ribeiro-Santos, M. Andrade, D. Madella, A.P. Martinazzo, L. de Aquino Garcia Moura, N.R. de Melo, A. Sanches-Silva, Trends Food Sci. Technol. 62, 154 (2017). https://doi.org/10.1016/j.tifs.2017.02.011

    Article  CAS  Google Scholar 

  2. X. Liu, J. Yang, J. Fu, T.G. Xie, P.C. Jiang, Z.H. Jiang, G.Y. Zhu, Biochem. Syst. Ecol. 81, 45 (2018). https://doi.org/10.1016/j.bse.2018.09.004

    Article  CAS  Google Scholar 

  3. J. Wang, B. Su, H. Jiang, N. Cui, Z. Yu, Y. Yang, Y. Sun, Fitoterapia. 146, 104675 (2020). https://doi.org/10.1016/j.fitote.2020.104675

    Article  CAS  PubMed  Google Scholar 

  4. Y.Q. Li, D.X. Kong, H. Wu, Ind. Crops Prod. 41, 269 (2013). https://doi.org/10.1016/j.indcrop.2012.04.056

    Article  CAS  Google Scholar 

  5. Z.Z. Liu, B.Q. Deng, S.L. Li, Z.R. Zou, Ind. Crops Prod. 124, 353 (2018). https://doi.org/10.1016/j.indcrop.2018.08.016

    Article  CAS  Google Scholar 

  6. C.G. Qian, L. Jin, L.P. Zhu, Y. Zhou, J. Chen, D.P. Yang, X.J. Xu, P. Ding, R.N. Li, Z.M. Zhao, Front. Microbiol. 13, 2385 (2022). https://doi.org/10.3389/fmicb.2022.864246

    Article  Google Scholar 

  7. H.Y. Wong, K.D. Tsai, Y.H. Liu, S.M. Yang, T.W. Chen, J. Cherng, K.S. Chou, C.M. Chang, B.T. Yao, J.M. Cherng, Phytother. Res. 30, 331 (2016). https://doi.org/10.1002/ptr.5536

    Article  CAS  Google Scholar 

  8. J. Zhang, M. Zhang, R. Ju, K. Chen, B. Bhandari, H. Wang, Crit. Rev. Food Sci. Nutr. 1, 22 (2022). https://doi.org/10.1080/10408398.2022.2092834

    Article  Google Scholar 

  9. F.L. Chen, S.S. Liu, Z.Y. Zhao, W.B. Gao, Y.B. Ma, X.X. Wang, S.M. Yan, D.Q. Luo, Ind. Crops Prod. 143, 111908 (2020). https://doi.org/10.1016/j.indcrop.2019.111908

    Article  CAS  Google Scholar 

  10. C.F. Chiang, L.S. Lai, Int. J. Biol. Macromol. 124, 346 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.181

    Article  CAS  PubMed  Google Scholar 

  11. G. Chen, F. Sun, S. Wang, W. Wang, J. Dong, F. Gao, Chin. J. Chem. Eng. 36, 38 (2021). https://doi.org/10.1016/j.cjche.2020.08.007

    Article  CAS  Google Scholar 

  12. X. Xie, H. Gao, X. Luo, Y. Zhang, Z. Qin, H. Ji, Adv. Compos. Hybrid Mater. 5, 2772 (2022). https://doi.org/10.1007/s42114-022-00422-5

    Article  CAS  Google Scholar 

  13. P.I. Modi, J.K. Parikh, M.A. Desai, Ind. Crops Prod. (2021). https://doi.org/10.1016/j.indcrop.2021.114088

    Article  Google Scholar 

  14. K. Hou, X. Xu, Y. Xiang, X. Chen, S.S. Lam, M. Naushad, C. Sonne, S. Ge, Adv. Compos. Hybrid Mater. 6, 77 (2023). https://doi.org/10.1007/s42114-023-00647-y

    Article  CAS  Google Scholar 

  15. E. Riera, A. Blanco, J. García, J. Benedito, A. Mulet, J.A. Gallego-Juárez, M. Blasco, Ultrasonics 50, 306 (2010). https://doi.org/10.1016/j.ultras.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  16. Y. Amini, J. Karimi-Sabet, M.N. Esfahany, M. Haghshenasfard, A. Dastbaz, Sep. Sci. Technol. 54, 2706 (2019). https://doi.org/10.1080/01496395.2018.1549076

    Article  CAS  Google Scholar 

  17. A.A.G. Khamseh, S.A. Ghorbanian, Y. Amini, M.M. Shadman, Sci. Rep. 13, 8393 (2023). https://doi.org/10.1038/s41598-023-35629-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M.H. Khani, A.G. Khamseh, J. Radioanal. Nucl. Chem.Radioanal. Nucl. Chem. 332, 3325 (2023). https://doi.org/10.1007/s10967-023-09026-9

    Article  CAS  Google Scholar 

  19. Z.Z. Liu, H.L. Li, G.Q. Cui, M.X. Wei, Z.R. Zou, H.Y. Ni, LWT-Food Sci. Technol. 147, 111497 (2021). https://doi.org/10.1016/j.lwt.2021.111497

    Article  CAS  Google Scholar 

  20. I.A.A. Meziane, N. Bali, N.B. Belblidia, N. Abatzoglou, E.H. Benyoussef, J. Appl. Res. Med. Aromat. Plants 15, 100226 (2019). https://doi.org/10.1016/j.jarmap.2019.100226

    Article  Google Scholar 

  21. X.J. Peng, N. Liu, M.X. Wang, B. Liang, C.T. Feng, R.S. Zhang, X.F. Wang, X.K. Hu, H.Y. Gu, D.M. Xing, Ind. Crops Prod. 187, 115418 (2022). https://doi.org/10.1016/j.indcrop.2022.115418

    Article  CAS  Google Scholar 

  22. D. Tsimogiannis, V. Oreopoulou, J. Appl. Res. Med. Aromat. Plants 9, 117 (2018). https://doi.org/10.1016/j.jarmap.2018.03.006

    Article  Google Scholar 

  23. Y. Amini, A. Hassanvand, V. Ghazanfari, M.M. Shadman, M. Heydari, Z.S. Alborzi, Int. Commun. Heat Mass Transf. 140, 106551 (2023). https://doi.org/10.1016/j.icheatmasstransfer.2022.106551

    Article  CAS  Google Scholar 

  24. J. Guo, R. Yang, Y. Gong, K. Hu, Y. Hu, F. Song, LWT-Food Sci. Technol. 147, 111673 (2021). https://doi.org/10.1016/j.lwt.2021.111673

    Article  CAS  Google Scholar 

  25. M. Madhumita, P. Guha, A. Nag, Ind. Crops Prod. 138, 111578 (2019). https://doi.org/10.1016/j.indcrop.2019.111578

    Article  CAS  Google Scholar 

  26. R. Zhao, X.Y. Yang, A.Q. Zhang, T.Y. Zhou, Y.W. Zhou, L. Yang, Food Chem. 372, 131258 (2022). https://doi.org/10.1016/j.foodchem.2021.131258

    Article  CAS  PubMed  Google Scholar 

  27. K.P. Solanki, M.A. Desai, J.K. Parikh, Ultrason. Sonochem. 49, 145 (2018). https://doi.org/10.1016/j.ultsonch.2018.07.038

    Article  CAS  PubMed  Google Scholar 

  28. A.P. Udepurkar, C. Clasen, S. Kuhn, Ultrason. Sonochem. 94, 106323 (2023). https://doi.org/10.1016/j.ultsonch.2023.106323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Z.L. Pan, W.J. Qu, H.L. Ma, G.G. Atungulu, T.H. McHugh, Ultrason. Sonochem. 18, 1249 (2011). https://doi.org/10.1016/j.ultsonch.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  30. D.M. Patil, K.G. Akamanchi, Ultrason. Sonochem. 37, 582 (2017). https://doi.org/10.1016/j.ultsonch.2017.02.015

    Article  CAS  PubMed  Google Scholar 

  31. D. Kostrzewa, A. Dobrzynska-Inger, A. Turczyn, Chem. Eng. Res. Design 160, 39 (2020). https://doi.org/10.1016/j.cherd.2020.05.005

    Article  CAS  Google Scholar 

  32. N. Nabet, B. Gilbert-Lopez, K. Madani, M. Herrero, E. Ibanez, J.A. Mendiola, Ind. Crops Prod. 129, 395 (2019). https://doi.org/10.1016/j.indcrop.2018.12.032

    Article  CAS  Google Scholar 

  33. B. Yingngam, A. Chiangsom, P. Pharikarn, K. Vonganakasame, V. Kanoknitthiran, W. Rungseevijitprapa, C. Prasitpuriprecha, J. Drug Deliv. Sci. Technol. 53, 101138 (2019). https://doi.org/10.1016/j.jddst.2019.101138

    Article  CAS  Google Scholar 

  34. Y. Liu, H. Wang, R. Fu, L. Zhang, M. Liu, W. Cao, R. Wu, S. Wang, J. Food Meas. Charact. 17, 664 (2022). https://doi.org/10.1007/s11694-022-01653-2

    Article  Google Scholar 

  35. J. Siepmann, F. Siepmann, J. Control. Release 161, 351 (2012). https://doi.org/10.1016/j.jconrel.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  36. F.L. Chen, Y. Guo, J. Kang, X.H. Yang, Z.Y. Zhao, S.S. Liu, Y.B. Ma, W.B. Gao, D.Q. Luo, Ind. Crops Prod. 144, 112052 (2020). https://doi.org/10.1016/j.indcrop.2019.112052

    Article  CAS  Google Scholar 

  37. J.P. Simonin, Chem. Eng. J. 300, 254 (2016). https://doi.org/10.1016/j.cej.2016.04.079

    Article  CAS  Google Scholar 

  38. H. Benmoussa, W. Elfalleh, A. Farhat, R. Bachoual, Z. Nasfi, M. Romdhane, Sep. Sci. Technol. 51, 2145 (2016). https://doi.org/10.1080/01496395.2016.1201507

    Article  CAS  Google Scholar 

  39. V.P. Pavicevic, M.S. Markovic, S.Z. Milojevic, M.S. Ristic, D.S. Povrenovic, V.B. Veljkovic, J. Chem. Technol. Biotechnol. 91, 883 (2016). https://doi.org/10.1002/jctb.4653

    Article  CAS  Google Scholar 

  40. A.R. Seadawy, D.C. Lu, M. Iqbal, Pramana-J. Phys. 93, 1 (2019). https://doi.org/10.1007/s12043-019-1771-x

    Article  Google Scholar 

  41. X. Guo, J.L. Wang, J. Mol. Liq. 288, 111100 (2019). https://doi.org/10.1016/j.molliq.2019.111100

    Article  CAS  Google Scholar 

  42. J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G.K.H. Madsen, N. Mingo, Comput. Phys. Commun. 220, 351 (2017). https://doi.org/10.1016/j.cpc.2017.06.023

    Article  CAS  Google Scholar 

  43. S. Milojevie, D.B. Radosavljevic, V.P. Pavicevic, S. Pejanovic, V.B. Veljkovic, Hem. Ind. 67, 843 (2013). https://doi.org/10.2298/hemind121026009m

    Article  Google Scholar 

  44. T.P. Dao, H.X. Phong, M.H. Cang, L.G. Bach, N. Van Muoi, Sains Malays. 50, 3251 (2021). https://doi.org/10.17576/jsm-2021-5011-09

    Article  CAS  Google Scholar 

  45. M.D. Kostic, N.M. Jokovic, O.S. Stamenkovic, K.M. Rajkovic, P.S. Milic, V.B. Veljkovic, Ind. Crops Prod. 52, 679 (2014). https://doi.org/10.1016/j.indcrop.2013.11.045

    Article  CAS  Google Scholar 

  46. R.J. Sanchez, M.B. Fernandez, S.M. Nolasco, Int. J. Heat Technol. 37, 918 (2019). https://doi.org/10.18280/ijht.370330

    Article  Google Scholar 

  47. A. Kate, A. Singh, N. Shahi, J.P. Pandey, O. Prakash, J. Food Process Eng 43, 13503 (2020). https://doi.org/10.1111/jfpe.13503

    Article  CAS  Google Scholar 

  48. S.Y. Li, H.L. Ma, Y.T. Guo, A.O. Oladejo, X. Yang, Q.F. Liang, Y.Q. Duan, Ultrason. Sonochem. 40, 644 (2018). https://doi.org/10.1016/j.ultsonch.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  49. J. Xi, L. He, L.G. Yan, Food Chem. 166, 287 (2015). https://doi.org/10.1016/j.foodchem.2014.06.026

    Article  CAS  PubMed  Google Scholar 

  50. R.J. Sanchez, C.M. Mateo, M.B. Fernandez, S.M. Nolasco, J. Food Eng. 192, 28 (2017). https://doi.org/10.1016/j.jfoodeng.2016.07.019

    Article  CAS  Google Scholar 

  51. R.Y. Krishnan, K.S. Rajan, Sep. Purif. Technol.Purif. Technol. 157, 169 (2016). https://doi.org/10.1016/j.seppur.2015.11.035

    Article  CAS  Google Scholar 

  52. F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, M. Abert-Vian, Ultrason. Sonochem. 34, 540 (2017). https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  53. B. Khadhraoui, M. Turk, A.S. Fabiano-Tixier, E. Petitcolas, P. Robinet, R. Imbert, M. El Maataoui, F. Chemat, Ultrason. Sonochem. 42, 482 (2018). https://doi.org/10.1016/j.ultsonch.2017.11.029

    Article  CAS  PubMed  Google Scholar 

  54. B. Khadhraoui, A.S. Fabiano-Tixier, E. Petitcolas, P. Robinet, R. Imbert, M.E. Maâtaoui, F. Chemat, Ultrason. Sonochem. 53, 214 (2019). https://doi.org/10.1016/j.ultsonch.2019.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We also thank the National Natural Science Foundation of China (21968007), the Guangxi Natural Science Foundation (2020GXNSFDA297007), and special funding for “Guangxi Bagui Scholars”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzeng Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Ling, X., Luo, X. et al. Mass Transfer Kinetics of Ultrasound-Assisted Steam Distillation for the Extraction of Cinnamon Oils. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00167-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00167-5

Keywords

Navigation