Skip to main content
Log in

Comparison and Analysis of Mixing Efficiency in Various Micromixer Designs

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In this paper, we evaluate the influence of various micromixer designs on the mixing efficiency of passive micromixers. We analyze the designs of various passive micromixers to identify the most efficient micromixer. Among them, the toroidal micromixer and 3D zig-zag micromixer demonstrated the highest mixing efficiency. We investigated the key factors influencing mixing in the toroidal and 3D zig-zag micromixer, identifying and confirming optimal designs. Ultimately, when comparing the mixing efficiency of the two micromixers, the 3D zig-zag micromixer achieved full mixing in a very short time of 0.8 ms. Through this research, it is anticipated that a benchmark will be provided for micromixer design in microfluidic devices when manufacturing micromixers of various forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.-C. Leong, C.-H. Tsai, C.-L. Chang, C.-F. Lin, L.-M. Fu, Rapid microfluidic mixers utilizing dispersion effect and interactively time-pulsed injection. Jpn. J. Appl. Phys. 46, 5345 (2007)

    Article  CAS  Google Scholar 

  2. T.H. Schulte, R.L. Bardell, B.H. Weigl, Microfluidic technologies in clinical diagnostics. Clin. Chim. Acta 321, 1–10 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. S.Z. Razzacki, P.K. Thwar, M. Yang, V.M. Ugaz, M.A. Burns, Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev. 56, 185–198 (2004)

    Article  PubMed  Google Scholar 

  4. Y. He et al., Numerical investigation of the mixing process in a Twin Cam Mixer: influence of triangular cam height-base ratio and eccentricity. Korean J. Chem. Eng. 38, 552–564 (2021)

    Article  CAS  Google Scholar 

  5. A.G. Niculescu, C. Chircov, A.C. Birca, A.M. Grumezescu, Fabrication and applications of microfluidic devices: a review. Int. J. Mol. Sci. 22(4), 2011 (2021). 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. I. Ji, J.W. Kang, T. Kim, M.S. Kang, S.B. Kwon, J. Hong, 3D printing-based ultrafast mixing and injecting systems for time-resolved serial femtosecond crystallography. Korean Chem. Eng. Res. 60(2), 300–307 (2022)

    CAS  Google Scholar 

  7. S.-H. Jang, I.-J. Kang, Drug delivery study on chitosan nanoparticles using iron oxide (II, III) and valine. Korean Chem. Eng. Res. 59, 514–520 (2021)

    CAS  Google Scholar 

  8. W.-H. Choi, B. Kim, Fabrication and characterization of dissolving microneedles containing lecithin for transdermal drug delivery. Korean Chem. Eng. Res. 59, 429–434 (2021)

    CAS  Google Scholar 

  9. M. Maeki, S. Uno, A. Niwa, Y. Okada, M. Tokeshi, Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 344, 80–96 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K.K.V. Canlas et al., Trends in nano-platforms for the treatment of viral infectious diseases. Korean J. Chem. Eng. 40, 706–713 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. E. Hong, J. Jeon, H.U. Kim, Recent development of machine learning models for the prediction of drug-drug interactions. Korean J. Chem. Eng. 40, 276–285 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Zhang, J. Sun, Lipid in chips: a brief review of liposomes formation by microfluidics. Int. J. Nanomed. 16, 7391–7416 (2021).

    Article  CAS  Google Scholar 

  13. M. Maeki, N. Kimura, Y. Sato, H. Harashima, M. Tokeshi, Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems. Adv. Drug Deliv. Rev. 128, 84–100 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. M.S. Ali, N. Hooshmand, M. El-Sayed, H.I. Labouta, Microfluidics for development of lipid nanoparticles: paving the way for nucleic acids to the clinic. ACS Appl. Bio Mater. 6, 3566–3576 (2021)

    Article  PubMed  Google Scholar 

  15. M. Faryadi, M. Rahimi, S. Safari, N. Moradi, Effect of high frequency ultrasound on micromixing efficiency in microchannels. Chem. Eng. Process. 77, 13–21 (2014)

    Article  CAS  Google Scholar 

  16. K.-I. Min, Fabrication of 3D multilayered microfluidic channel using fluorinated ethylene propylene nanoparticle dispersion. Korean Chem. Eng. Res. 59, 639–643 (2021)

    CAS  Google Scholar 

  17. B. Zhou et al., Design and fabrication of magnetically functionalized flexible micropillar arrays for rapid and controllable microfluidic mixing. Lab Chip 15, 2125–2132 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. D. Ahmed, X. Mao, J. Shi, B.K. Juluri, T.J. Huang, A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip 9, 2738–2741 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. K. Karthikeyan, L. Sujatha, Study of permissible flow rate and mixing efficiency of the micromixer devices. Int. J. Chem. React. Eng. 17, 20180047 (2018)

    Google Scholar 

  20. A. Cosentino et al., An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application. Sci. Rep. 5, 17876 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Agarwal, A. Salahuddin, H. Wang, M.J. Ahamed, Design and development of an efficient fluid mixing for 3D printed lab-on-a-chip. Microsyst. Technol. 26, 2465–2477 (2020)

    Article  Google Scholar 

  22. H. Lv, X. Chen, Novel study on the mixing mechanism of active micromixers based on surface acoustic waves. Ind. Eng. Chem. Res. 61, 10264–10274 (2022)

    Article  CAS  Google Scholar 

  23. M. Bayareh, M.N. Ashani, A. Usefian, Active and passive micromixers: a comprehensive review. Chem. Eng. Process. Process Intens. 147, 107771 (2020)

    Article  CAS  Google Scholar 

  24. J. Sun et al., Numerical and experimental investigation of a magnetic micromixer under microwires and uniform magnetic field. J. Magn. Magn. Mater. 551, 169141 (2022)

    Article  CAS  Google Scholar 

  25. D. Bahrami, A.A. Nadooshan, M. Bayareh, Effect of non-uniform magnetic field on mixing index of a sinusoidal micromixer. Korean J. Chem. Eng. 39, 316–327 (2022)

    Article  CAS  Google Scholar 

  26. S.-G. Jeong et al., Nanoliter scale microloop reactor with rapid mixing ability for biochemical reaction. Korean J. Chem. Eng. 35, 2036–2042 (2018)

    Article  CAS  Google Scholar 

  27. B. Yin et al., Micromixer with fine-tuned mathematical spiral structures. ACS Omega 6, 30779–30789 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. E. Nady, G. Nagy, R. Huszánk, Improvement in mixing efficiency of microfluidic passive mixers functionalized by microstructures created with proton beam lithography. Chem. Eng. Sci. 247, 117006 (2022)

    Article  CAS  Google Scholar 

  29. S. Hossain, M. Ansari, K.-Y. Kim, Evaluation of the mixing performance of three passive micromixers. Chem. Eng. J. 150, 492–501 (2009)

    Article  CAS  Google Scholar 

  30. J. Choe, Y. Kwon, Y. Kim, H.-S. Song, K.H. Song, Micromixer as a continuous flow reactor for the synthesis of a pharmaceutical intermediate. Korean J. Chem. Eng. 20, 268–272 (2003)

    Article  CAS  Google Scholar 

  31. M. Nimafar, V. Viktorov, M. Martinelli, Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels. Chem. Eng. Sci. 76, 37–44 (2012)

    Article  CAS  Google Scholar 

  32. V. Viktorov, M.R. Mahmud, C. Visconte, Comparative analysis of passive micromixers at a wide range of Reynolds numbers. Micromachines 6, 1166–1179 (2015)

    Article  Google Scholar 

  33. P. Li, J. Cogswell, M. Faghri, Design and test of a passive planar labyrinth micromixer for rapid fluid mixing. Sens. Actuat. B Chem. 174, 126–132 (2012)

    Article  CAS  Google Scholar 

  34. T. Tofteberg, M. Skolimowski, E. Andreassen, O. Geschke, A novel passive micromixer: lamination in a planar channel system. Microfluid. Nanofluid. 8, 209–215 (2010)

    Article  CAS  Google Scholar 

  35. J.J. Chen, Y.S. Shie, Interfacial configurations and mixing performances of fluids in staggered curved-channel micromixers. Microsyst. Technol. 18, 1823–1833 (2012)

    Article  CAS  Google Scholar 

  36. M.K. Parsa, F. Hormozi, D. Jafari, Mixing enhancement in a passive micromixer with convergent–divergent sinusoidal microchannels and different ratio of amplitude to wave length. Comput. Fluids 105, 82–90 (2014)

    Article  Google Scholar 

  37. X. Chen, Z. Zhao, Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Anal. Chim. Acta 964, 142–149 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. S.O. Hong et al., Gear-shaped micromixer for synthesis of silica particles utilizing inertio-elastic flow instability. Lab Chip 21, 513–520 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. S. Kim et al., Monolithic 3D micromixer with an impeller for glass microfluidic systems. Lab Chip 20, 4474–4485 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. A.D. Stroock et al., Chaotic mixer for microchannels. Science 295, 647–651 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. Wild, Andre, Timothy Leaver, and Robert James Taylor. "Bifurcating mixers and methods of their use and manufacture." U.S. Patent No. 10,076,730. (2018)

  42. H. Kim et al., Submillisecond organic synthesis: Outpacing Fries rearrangement through microfluidic rapid mixing. Science 352, 691–694 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. B. Lee et al., Characterization of passive microfluidic mixer with a three-dimensional zig-zag channel for cryo-EM sampling. Chem. Eng. Sci. 281, 119161 (2023)

    Article  CAS  Google Scholar 

  44. C. Wang, Y. Hu, Mixing of liquids using obstacles in y-type microchannels. J. Appl. Sci. Eng. 13, 385–394 (2010)

    Google Scholar 

  45. M.A. Ansari, K.-Y. Kim, Shape optimization of a micromixer with staggered herringbone groove. Chem. Eng. Sci. 62, 6687–6695 (2007)

    Article  CAS  Google Scholar 

  46. T.J. Kwak et al., Convex grooves in staggered herringbone mixer improve mixing efficiency of laminar flow in microchannel. PLoS ONE 11, e0166068 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  47. P.B. Howell Jr., D.R. Mott, J.P. Golden, F.S. Ligler, Design and evaluation of a Dean vortex-based micromixer. Lab Chip 4, 663–669 (2004)

    Article  CAS  PubMed  Google Scholar 

  48. C. Webb et al., Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes. Int. J. Pharm. 582, 119266 (2020)

    Article  CAS  PubMed  Google Scholar 

  49. J. Li, G. Xia, Y. Li, Numerical and experimental analyses of planar asymmetric split-and-recombine micromixer with dislocation sub-channels. J. Chem. Technol. Biotechnol. 88, 1757–1765 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C3004936 and 2021R1A5A8032895). ※ MSIT: Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S.y., Lee, CS. Comparison and Analysis of Mixing Efficiency in Various Micromixer Designs. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00161-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00161-x

Keywords

Navigation