Skip to main content
Log in

Gas–Liquid Flow Characteristics and Performance Optimization of Industrial Downflow Jet Loop Reactor Based on Computational Fluid Dynamics

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The fluid dynamics and structural enhancements of a novel industrial jet loop reactor (JLR) were investigated through Computational Fluid Dynamics (CFD) simulations. The arc-shaped trajectory of W-shaped baffle facilitated the continued circulation of a substantial portion of the fluid, resulting in increased total gas holdup, axial liquid velocity, and overall liquid circulation volume. Compared to similar reactors with a round baffle, the JLR increased gas holdup from 13.01% to 14.04% and liquid circulation volume from 4.67 m3/s to 4.94 m3/s; the W-shaped baffles increased gas holdup and liquid circulation volume by approximately 8% and 7%, respectively. Additionally, the study explored the influence of various structural parameters such as nozzle diameter, nozzle quantity, draft tube length and shape. Optimal structural parameters were determined based on this analysis. The insights and design proposed in this work will provide valuable perspectives and further understanding for reactor scale-up in industrial applications, serving as a guide for geometric and flow pattern functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

C D :

Single bubble traction coefficient

C L :

Lift force coefficient

d p :

Particle diameter, m

D :

Reactor diameter, m

D n :

Nozzle diameter, m

D t :

Draft tube diameter, m

Eo :

Eotvos number

g :

Gravitational acceleration, m s2

H d :

Distance from draft tube bottom to baffle bottom, m

H n :

Distance from nozzle bottom to draft tube bottom, m

l :

Bubble size, m

L :

Reactor length, m

L d :

Draft tube length, m

Re :

Reynolds number

Re L :

Nozzle Reynolds number

u τ :

The wall friction velocity, m s1

U SL :

Superficial velocity of liquid, m s1

V LC :

Liquid volume of circulation, m3 s1

ɛ :

Gas holdup

τ :

Stress tensor, Pa

μ :

Viscosity, Pas

υ :

Kinematic viscosity, m2 s1

ρ :

Density, kg m3

a :

Annular gap

d :

Draft tube

n :

Nozzle

w :

Wall

References

  1. C.S. Mathpati, S.S. Deshpande, J.B. Joshi, Computational and experimental fluid dynamics of jet loop reactor. AIChE J. 55, 2526 (2009)

    Article  ADS  CAS  Google Scholar 

  2. A. Mandal, Characterization of gas-liquid parameters in a down-flow jet loop bubble column. Braz. J. Chem. Eng. 27, 253 (2010)

    Article  CAS  Google Scholar 

  3. H. Warmeling, A. Behr, A.J. Vorholt, Jet loop reactors as a versatile reactor set up - intensifying catalytic reactions: a review. Chem. Eng. Sci. 149, 229 (2016)

    Article  CAS  Google Scholar 

  4. H. Warmeling, D. Janz, M. Peters, A.J. Vorholt, Acceleration of lean aqueous hydroformylation in an innovative jet loop reactor concept. Chem. Eng. J. 330, 585 (2017)

    Article  CAS  Google Scholar 

  5. R.L. Yadav, A.W. Patwardhan, Design aspects of ejectors: effects of suction chamber geometry. Chem. Eng. Sci. 63, 3886 (2008)

    Article  CAS  Google Scholar 

  6. M. Opletala, P. Novotny, V. Linek, T. Moucha, M. Kordac, Gas suction and mass transfer in gas-liquid up-flow ejector loop reactors. Effect of nozzle and ejector geometry. Chem. Eng. J. 353, 436 (2018)

    Article  Google Scholar 

  7. D.V. Sharma, A.W. Patwardhan, V.V. Ranade, Estimation of gas induction in jet loop reactors: Influence of nozzle designs. Chem. Eng. Res. Des. 125, 24 (2017)

    Article  CAS  Google Scholar 

  8. J. Esteban, H. Warmeling, A.J. Vorholt, An approach to chemical reaction engineering and process intensification for the lean aqueous hydroformylation using a jet loop reactor. Chem. Ing. Tec. 91, 560 (2019)

    Article  CAS  Google Scholar 

  9. S. Guven, B. Hamers, R. Franke, M. Priske, M. Becker, D. Vogt, Kinetics of cyclooctene hydroformylation for continuous homogeneous catalysis. Catal. Sci. Technol. 4, 524 (2014)

    Article  Google Scholar 

  10. N. Herrmann, J. Bianga, M. Palten, T. Riemer, D. Vogt, J.M. Dreimann, T. Seidensticker, Improving aqueous biphasic hydroformylation of unsaturated oleochemicals using a jet-loop-reactor. Eur. J. Lipid Sci. Technol. (2020). https://doi.org/10.1002/ejlt.201900166

    Article  Google Scholar 

  11. J.C. Wu, B.H. Wang, D.L. Zhang, G.F. Song, J.T. Yuan, B.F. Liu, Production of p-toluenesulfonic acid by sulfonating toluene with gaseous sulfur trioxide. J. Chem. Technol. Biotechnol. 76, 619 (2001)

    Article  CAS  Google Scholar 

  12. S. Khoufi, A. Louhichi, S. Sayadi, Optimization of anaerobic co-digestion of olive mill wastewater and liquid poultry manure in batch condition and semi-continuous jet-loop reactor. Biores. Technol. 182, 67 (2015)

    Article  CAS  Google Scholar 

  13. B. Park, G. Hwang, S. Haam, C. Lee, I.-S. Ahn, K. Lee, Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution: performance evaluation. J. Hazard. Mater. 153, 735 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. A. Vogelpohl, Wastewater treatment by the hcr-process. Acta Biotechnol. 20, 119 (2000)

    Article  CAS  Google Scholar 

  15. B. Farizoglu, B. Keskinler, E. Yildiz, A. Nuhoglu, Simultaneous removal of c, n, p from cheese whey by jet loop membrane bioreactor (jlmbr). J. Hazard. Mater. 146, 399 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. D.K. Jain, A.N. Patwari, A.A. Khan, M.B. Rao, Liquid circulation characteristics in jet loop reactors. Can. J. Chem. Eng. 68, 1047 (1990)

    Article  CAS  Google Scholar 

  17. U. Wachsmann, N. Räbiger, A. Vogelpohl, Einfluß der geometrie auf die hydrodynamik eines mit einem dreiphasen-system betriebenen schlaufenreaktors. Chem. Ing. Tec. 58, 140 (1986)

    Article  CAS  Google Scholar 

  18. U. Wachsmann, N. Raebiger, A. Vogelpohl, Effect of geometry on hydrodynamics and mass transfer in the compact reactor. Ger. Chem. Eng. 8, 411 (1985)

    Google Scholar 

  19. X. Ma, D. Hong, R. Huang, T. Xu, Gas holdup and volumetric liquid phase mass transfer coefficients in a downjet loop reactor. Chem. Eng. J. 49, 49 (1992)

    Article  CAS  Google Scholar 

  20. G. Padmavathi, K.R. Rao, Effect of liquid viscosity on gas holdups in a reversed flow jet loop reactor. Can. J. Chem. Eng. 70, 800 (1992)

    Article  CAS  Google Scholar 

  21. M. Velan, T.K. Ramanujam, Hydrodynamics in down flow jet loop reactor. Can. J. Chem. Eng. 69, 1257 (1991)

    Article  CAS  Google Scholar 

  22. A.M. Jamshidi, M. Sohrabi, F. Vahabzadeh, B. Bonakdarpour, Hydrodynamic and mass transfer characterization of a down flow jet loop bioreactor. Biochem. Eng. J. 8, 241 (2001)

    Article  CAS  Google Scholar 

  23. A.M. Jamshidi, M. Sohrabi, F. Vahabzadeh, B. Bonakdarpour, Studies on the hydrodynamic behavior and mass transfer in a down-flow jet loop reactor with a coaxial draft tube. J. Chem. Technol. Biotechnol. 76, 39 (2001)

    Article  CAS  Google Scholar 

  24. K.Y. Prasad, T.K. Ramanujam, Gas holdup and overall volumetric mass transfer coefficient in a modified reversed flow jet loop reactor. Can. J. Chem. Eng. 73, 190 (1995)

    Article  CAS  Google Scholar 

  25. J.T. Tinge, A.J.R. Casado, Influence of pressure on the gas hold-up of aqueous activated carbon slurries in a down flow jet loop reactor. Chem. Eng. Sci. 57, 3575 (2002)

    Article  CAS  Google Scholar 

  26. Y. Gao, D. Hong, H. Lu, Y. Cheng, L. Wang, X. Li, Gas holdup and liquid velocity distributions in the up flow jet-loop reactor. Chem. Eng. Res. Des. 136, 94 (2018)

    Article  CAS  Google Scholar 

  27. Z. Duan, W. Li, L. Lin, R. Qu, S. Li, J. Zhang, Investigation on gas induction of liquid-gas ejector in jet loop reactor. Int. J. Chem. React. Eng. 19, 1271 (2021)

    Article  Google Scholar 

  28. N.D.A. Konan, E.D. Huckaby, Cfd investigation of low-attrition air-reactor designs for the netl chemical-looping combustion reactor. Powder Technol. 391, 142 (2021)

    Article  CAS  Google Scholar 

  29. A. Sayyar, H. Zhang, T. Wang, Numerical simulation of the hydrodynamics in a novel jet loop bubble column with helical sieve tapes. Chem. Eng. Sci. 270, 118491 (2023)

    Article  CAS  Google Scholar 

  30. A. Sayyar, H. Zhang, T. Wang, Numerical simulation of the hydrodynamics in a novel jet loop bubble column with helical sieve tapes. Chem. Eng. Sci. 270, 118491 (2023)

    Article  CAS  Google Scholar 

  31. P. Bartocci, A. Abad, A. Cabello, M.O. Loscertales, W. Lu, H. Yang, F. Fantozzi, “Cfd modelling of the fuel reactor of a chemical loping combustion plant to be used with biomethane. Processes 10, 588 (2022)

    Article  CAS  Google Scholar 

  32. Z. Khan, J.B. Joshi, Comparison of k–ε, rsm and les models for the prediction of flow pattern in jet loop reactor. Chem. Eng. Sci. 127, 323 (2015)

    Article  CAS  Google Scholar 

  33. R.G. Szafran, A. Kmiec, Application of cfd modelling technique in engineering calculations of three-phase flow hydrodynamics in a jet-loop reactor. Int. J. Chem. React. Eng. (2004). https://doi.org/10.2202/1542-6580.1179

    Article  Google Scholar 

  34. D. Sharma, A. Patwardhan, V. Ranade, Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector. Energy 164, 10 (2018)

    Article  Google Scholar 

  35. Y. Gao, D. Hong, Y. Cheng, L. Wang, X. Li, Cfd simulation for up flow jet-loop reactors by use of bi-dispersed bubble model. Chem. Eng. Res. Des. 141, 66 (2019)

    Article  CAS  Google Scholar 

  36. H.L. Tung, C.C. Tu, Y.Y. Chang, W.T. Wu, Bubble characteristics and mass transfer in an airlift reactor with multiple net draft tubes. Bioprocess Eng. 18, 323 (1998)

    Article  CAS  Google Scholar 

  37. B. Farizoglu, B. Keskinler, Influence of draft tube cross-sectional geometry on k(l)a and epsilon in jet loop bioreactors (jlb). Chem. Eng. J. 133, 293 (2007)

    Article  CAS  Google Scholar 

  38. T. Vorapongsathorn, P. Wongsuchoto, P. Pavasant, Performance of airlift contactors with baffles. Chem. Eng. J. 84, 551 (2001)

    Article  CAS  Google Scholar 

  39. A. Tomiyama, H. Tamai, I. Zun, S. Hosokawa, Transverse migration of single bubbles in simple shear flows. Chem. Eng. Sci. 57, 1849 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the support from the National Natural Science Foundation of China (No. 21978199).

Author information

Authors and Affiliations

Authors

Contributions

Yonghui Li: Conceptualization, Formal analysis, Writing—original draft, Writing—review & editing. Jiayi Wang: Methodology, Software, Writing—original draft, Writing—review & editing. Chao Lu: Methodology, Visualization, Writing—review & editing. Sheng Wang: Methodology, Software, Writing—review & editing. He Dong: Supervision, Formal analysis, Writing—review & editing.

Corresponding author

Correspondence to He Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, J., Lu, C. et al. Gas–Liquid Flow Characteristics and Performance Optimization of Industrial Downflow Jet Loop Reactor Based on Computational Fluid Dynamics. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00118-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00118-0

Keywords

Navigation