Skip to main content
Log in

Optimization of Hydrothermal Synthesis of Nickel Oxide with Flower-Like Structure

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Herein, nano-flower NiO is successfully fabricated via a simple hydrothermal process using urea and nickel(II) nitrate as reactants, followed by a calcination reaction. Final products with different morphologies are obtained by varying the molar ratio of the reactants, varying the solvent, and using a surfactant. The results reveal that the NiO particles obtained using a molar ratio of 1:2 (Ni: urea) in a mixture of water and ethanol as the solvent and in the presence of cetyl trimethyl ammonium bromide (CTAB) exhibit the best uniformity and an excellent BET specific surface area of 62.97 m2 g–1. The increase in uniformity and decrease in particle size can be attributed to the ethanol in the solvent, which slows ion diffusion in the solution and CTAB, thereby controlling the growth of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and code Availability

All data generated or analyzed during this study are included in this published article.

References

  1. S. Cao, L. Peng, T. Han, B. Liu, D. Zhu, C. Zhao, J. Xu, Y. Tang, J. Wang, S. He, Phys. E Low-Dimens. Syst. Nanostruct. 118, 113655 (2020)

    Article  CAS  Google Scholar 

  2. S.D. Dhas, P.S. Maldar, M.D. Patil, A.B. Nagare, M.R. Waikar, R.G. Sonkawade, A.V. Moholkar, Vacuum. 181, 109646 (2020)

    Article  ADS  CAS  Google Scholar 

  3. J. Wang, Q. Zhou, Z. Lu, Z. Wei, W. Zeng, Mater. Lett. 255, 126523 (2019)

    Article  CAS  Google Scholar 

  4. J. Cao, H. Zhang, X. Yan, Mater. Lett. 185, 40 (2016)

    Article  CAS  Google Scholar 

  5. N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh, S. Ramesh, J. Colloid Interface Sci. 471, 136 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. J. Chen, Y. Huang, C. Li, X. Chen, X. Zhang, Appl. Surf. Sci. 360, 534 (2016)

    Article  ADS  CAS  Google Scholar 

  7. M. Rizwan, J.W. Tse, A. Nori, K.W. Leong, E.K.F. Yim, Princ Regen Med (Elsevier, 2019), pp.437–468

    Book  Google Scholar 

  8. E.M. Modan, A.G. Plăiașu, Ann. “Dunarea Jos” Univ. Galati. Fascicle IX, Metall. Mater. Sci. 43, 53 (2020)

    CAS  Google Scholar 

  9. X. Liu, L. Cao, Z. Guo, Y. Li, W. Gao, L. Zhou, Materials (Basel) 12, 3304 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. T. Thi Bich Tran, E.-J. Park, H.-I. Kim, S.-H. Lee, H.-J. Jang, J.-T. Son, Mater. Lett. 316, 131810 (2022)

    Article  CAS  Google Scholar 

  11. M.P. Thomas, A. Ullah, R.H. Pham, H. Djieutedjeu, J.P. Selegue, B.S. Guiton, Cryst. Growth Des. 20, 5728 (2020)

    Article  CAS  Google Scholar 

  12. S. Cabanas-Polo, K.S. Suslick, A.J. Sanchez-Herencia, Ultrason. Sonochem. 18, 901 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Lu, Y.H. Ma, S.Y. Ma, W.X. Jin, S.H. Yan, X.L. Xu, Q. Chen, Mater. Lett. 190, 252 (2017)

    Article  CAS  Google Scholar 

  14. T. Kavitha, H. Yuvaraj, J. Mater. Chem. 21, 15686 (2011)

    Article  CAS  Google Scholar 

  15. H. Zhang, W.-G. Chen, Y.-Q. Li, L.-F. Jin, F. Cui, Z.-H. Song, Front. Chem. 6, 188 (2018)

    Article  ADS  Google Scholar 

  16. L.X. Song, Z.K. Yang, Y. Teng, J. Xia, P. Du, J. Mater. Chem. A 1, 8731 (2013)

    Article  CAS  Google Scholar 

  17. C. Yuan, H. Li, L. Xie, F. Wang, H. Deng, F. Chang, Y. Sun, RSC Adv. 5, 92128 (2015)

    Article  ADS  CAS  Google Scholar 

  18. J. Liu, P. Chen, L. Deng, J. He, L. Wang, L. Rong, J. Lei, Sci. Rep. 5, 34 (2015)

    Google Scholar 

  19. J. Wang, X. Qin, J. Guo, M. Zhou, B. Zong, L. Wang, G. Liang, Dalt Trans. 47, 7333 (2018)

    Article  CAS  Google Scholar 

  20. W.H. Ryu, S.J. Lim, W.K. Kim, H. Kwon, J. Power Sources. 257, 186 (2014)

    Article  ADS  CAS  Google Scholar 

  21. L. Wang, G. Liu, W. Wu, D. Chen, G. Liang, J. Mater. Chem. A 3, 19497 (2015)

    Article  CAS  Google Scholar 

  22. M. Mohsen-Nia, H. Amiri, B. Jazi, J Solut. Chem. 39, 701 (2010)

    Article  CAS  Google Scholar 

  23. D. Wang, B. Guan, Y. Li, D. Li, Z. Xu, Y. Hu, Y. Wang, H. Zhang, J. Alloys Compd. 737, 238 (2018)

    Article  CAS  Google Scholar 

  24. S. Saita, S. Takeda, H. Kawasaki, Nanomaterials 12, 2004 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. Subrahmanyam, P. Gurikov, P. Dieringer, M. Sun, I. Smirnova, Gels. 1, 291 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  26. L.-P. Zhu, G.-H. Liao, Y. Yang, H.-M. Xiao, J.-F. Wang, S.-Y. Fu, Nanoscale Res. Lett. 4, 550 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. Moavi, F. Buazar, M.H. Sayahi, Sci. Rep. 11, 6296 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. S.K. Mohamed, A.M. Elhgrasi, O.I. Ali, Environ. Sci. Pollut Res. 29, 64792 (2022)

    Article  CAS  Google Scholar 

  29. A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du, T. Ahmad, J. Mol. Struct. 1058, 56 (2014)

    Article  ADS  CAS  Google Scholar 

  30. Y. Zheng, B. Zhu, H. Chen, W. You, C. Jiang, J. Yu, J. Colloid Interface Sci. 504, 688 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Ş-B. Ivan, I. Popescu, I. Fechete, F. Garin, V.I. Pârvulescu, I.-C. Marcu, Catal. Sci. Technol. 6, 6953 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ministry of SMEs and Startups, Republic of Korea (S3045542); the Technology Innovation Program (20003747, Development of highperformance cathode material manufacturing technology through valuable metal upcycling from waste batteries and waste cathode material) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea); the Korea Agency for Infrastructure Technology; National Research Foundation of Korea (NRF) funded by the Korean government (MSIT, No. 2021R1F1A106348111); and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0020614, HRD Program for Industrial Innovation).

Author information

Authors and Affiliations

Authors

Contributions

TTBT: Conceptualization, Methodology, Writing, Editing, E-JP: Software, J-TS: Supervision.

Corresponding author

Correspondence to Jong-Tae Son.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study does not involve human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.T.B., Park, EJ. & Son, JT. Optimization of Hydrothermal Synthesis of Nickel Oxide with Flower-Like Structure. Korean J. Chem. Eng. 41, 473–478 (2024). https://doi.org/10.1007/s11814-024-00070-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00070-z

Keywords

Navigation