Skip to main content
Log in

Development of Chemical and Mechanical Acceleration Stress Test Method for PEMFC Polymer Membranes

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To improve the durability of polymer electrolyte membrane fuel cell polymer membranes, it is important to evaluate their durability in a short time. In 2016, the U.S. Department of Energy (DOE) presented the AST protocol, a degradation method that simultaneously performs electrochemical and mechanical degradation. The AST protocol has several problems such as long evaluation time, electrode degradation due to open circuit voltage changes, and difficulty in determining whether the durability of the polymer membrane is electrochemically or mechanically weaker. Based on the DOE accelerated stress test protocol, we supplied O2 instead of air to the cathode, increased the drying time, distinguished and improved electrochemical/mechanical evaluation methods. The improved AST protocol reduced the evaluation time of the Nafion XL membrane electrode assembly by approximately 3 times or more, and the degradation of the electrode catalyst was also reduced by 1/3. In addition, it was confirmed that the polymer membrane exhibited weaker mechanical durability than electrochemical; hence, it was possible to ascertain the cause of the degradation, such that the durability of the polymer membrane can be evaluated more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Wu, J. Yang, H. Zhan, X.K. Yan, X. Zuo, Korean J. Chem. Eng. 39, 2055 (2022)

    Article  CAS  Google Scholar 

  2. S. Woo, S. Kim, S. Woo, S. Park, Y. Kang, N. Jung, S. Yim, Korean J. Chem. Eng. 40(10), 2455 (2023)

    Article  CAS  Google Scholar 

  3. G. Yang, H. Wang, F. Su, S. Li, G. Zhang, J. Sun, Q. Shen, Z. Jiang, J. Liao, P. Chen, Korean J. Chem. Eng. 40(7), 1598 (2023)

    Article  CAS  Google Scholar 

  4. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, Appl. Energy 88(4), 981 (2011)

    Article  CAS  ADS  Google Scholar 

  5. S. Park, D. Choi, D. Lee, B. Choi, S. Yoo, Korean J. Chem. Eng. 40(7), 1549 (2023)

    Article  CAS  Google Scholar 

  6. S. Oh, D. Lim, K. Park, Korean Chem. Eng. Res. 59(1), 1 (2021)

    CAS  Google Scholar 

  7. S. Venkatesan, C. Lim, S. Holdcroft, E. Kjeang, J. Electrochem. Soc.Electrochem. Soc. 163(7), F637 (2016)

    Article  CAS  Google Scholar 

  8. B. Wu, M. Zhao, W. Shi, W. Liu, J. Liu, D. Xing, Y. Yao, Z. Hou, P. Ming, J. Gu, Z. Zou, Int. J. Hydrog. EnergyHydrog. Energy 39(26), 14381 (2014)

    Article  CAS  Google Scholar 

  9. F.D. Coms, H. Xu, T. McCallum, C. Mittelsteadt, ECS Trans. 64(3), 389 (2014)

    Article  CAS  Google Scholar 

  10. T.H. Kim, J.H. Lee, H. Lee, T.W. Lim, K.P. Park, Korean Chem. Eng. Res. 45(4), 345 (2007)

    CAS  Google Scholar 

  11. X.-Z. Yuan, H. Li, S. Zhang, J. Martin, H. Wang, J. Power Sour 196(22), 9107 (2011)

    Article  CAS  ADS  Google Scholar 

  12. M. Chandesris, R. Vincent, L. Guetaz, J.S. Roch, D. Thoby, M. Quinaud, Int. J. Hydrog. EnergyHydrog. Energy 42(12), 8139 (2017)

    Article  CAS  Google Scholar 

  13. S. Vengatesan, M.W. Fowler, X.Z. Yuan, H. Wang, J. Power. Sources 196(11), 5045 (2011)

    Article  CAS  ADS  Google Scholar 

  14. R. Sharma, S. Gyergyek, Q. Li, S.M. Andersen, J. Electrochem. Soc.Electrochem. Soc. 838, 82 (2019)

    CAS  Google Scholar 

  15. D. Lim, S. Oh, S. Jung, J. Jeong, K. Park, Korean Chem. Eng. Res. 59(1), 1 (2021)

    Google Scholar 

  16. DOE fuel cell technologies office, multi-year research, development and demonstration plan (2016). https://energy.gov/sites/prod/files/2016/10/f33/fcto_myrdd_fuel_cells.pdf.

  17. D. Yoo, B. Hwang, S. Oh, K. Park, Korean J. Chem. Eng. 40(8), 2004 (2023)

    Article  CAS  Google Scholar 

  18. New energy and industrial technology development organization, https://www.nedo.go.jp/, (2016).

  19. S. Oh, J. Gwon, D. Lim, K. Park, Korean Chem. Eng. Res. 59(1), 1 (2021)

    CAS  Google Scholar 

  20. R. Mukundan, Fuel Cell – performance and durability FC139 – modeling, evaluation, characterization. 2016 DOE fuel cell technologies office annual merit review. June 8th (2016).

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (20015756) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Funding

Ministry of Trade, Industry and Energy, 20015756, Kwon Pil Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-pil Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Lim, D., Han, Y. et al. Development of Chemical and Mechanical Acceleration Stress Test Method for PEMFC Polymer Membranes. Korean J. Chem. Eng. 41, 545–552 (2024). https://doi.org/10.1007/s11814-024-00040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00040-5

Keywords

Navigation