Skip to main content
Log in

Hydrogen Plasma-Assisted Atomic Layer Deposition of Ru with Low Oxygen Content

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ru is extensively used in electrical and energy applications because of its high electrical conductivity and catalytic activity. This study reports the H2 plasma-enhanced atomic layer deposition (PEALD) of Ru thin films using a novel carbonyl cyclohexadiene ruthenium precursor. The optimized process conditions for depositing Ru thin films by PEALD were established based on the growth per cycle (GPC), chemical formation, crystallinity, conformality, and resistivity, according to process parameters such as precursor pulse time, H2 plasma pulse time, purge time, and deposition temperature. Pure Ru thin films (low carbon and oxygen) were deposited with low resistivity (30.8 μΩ cm) and showed high conformality (> 95%) on the Si trenches. The oxidant-free PEALD Ru process reported in this study may have implications on the fabrication of high-quality interfaces between Ru and easily-oxidized substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. N. Torazawa, T. Hinomura, S. Hirao, E. Kobori, H. Korogi, S. Matsumoto, ECS J. Solid State Sci. Technol. 5, P433 (2016)

    Article  CAS  Google Scholar 

  2. J. Yu, Q. He, G. Yang, W. Zhou, Z. Shao, M. Ni, ACS Catal. 9, 9973–10011 (2019)

    Article  CAS  Google Scholar 

  3. S. Kye, H.J. Kim, D. Go, B.C. Yang, J.W. Shin, S. Lee, J. An, ACS Catal. 11, 3523–3529 (2021)

    Article  CAS  Google Scholar 

  4. S. Cwik, K.N. Woods, M.J. Saly, T.J. Knisley, C.H. Winter, J. Vac. Sci. Technol. A 38, 012402 (2020)

    Article  CAS  Google Scholar 

  5. A. Rogozhin, A. Miakonkikh, E. Smirnova, A. Lomov, S. Simakin, K. Rudenko, Coatings 11, 117 (2021)

    Article  CAS  Google Scholar 

  6. J.A. Kittl, K. Opsomer, M. Popovici, N. Menou, B. Kaczer, X.P. Wang, C. Adelmann, M.A. Pawlak, K. Tomida, A. Rothschild, Microelectron. Eng. 86, 1789–1795 (2009)

    Article  CAS  Google Scholar 

  7. V. Misra, G. Lucovsky, G. Parsons, MRS Bull. 27, 212–216 (2002)

    Article  CAS  Google Scholar 

  8. S.K. Kim, W.-D. Kim, K.-M. Kim, C.S. Hwang, J. Jeong, Appl. Phys. Lett. 85, 4112–4114 (2004)

    Article  CAS  Google Scholar 

  9. J.H. Han, S.W. Lee, G.-J. Choi, S.Y. Lee, C.S. Hwang, C. Dussarrat, J. Gatineau, Chem. Mater. 21, 207–209 (2009)

    Article  CAS  Google Scholar 

  10. H.J. Kim, M.J. Kil, J. Lee, B.C. Yang, D. Go, Y. Lim, Y. Kim, J. An, Appl. Surf. Sci. 538, 148105 (2020)

    Article  Google Scholar 

  11. D. Go, B.C. Yang, J.W. Shin, H.J. Kim, S. Lee, S. Kye, S. Kim, J. An, Ceram. Int. 46(2), 1705–1710 (2020)

    Article  CAS  Google Scholar 

  12. H.J. Jeong, J.W. Kim, K. Bae, H. Jung, J.H. Shim, ACS Catal. 5, 1914–1921 (2015)

    Article  CAS  Google Scholar 

  13. H.J. Jeong, J.W. Kim, D.Y. Jang, J.H. Shim, J. Power. Sources 291, 239–245 (2015)

    Article  CAS  Google Scholar 

  14. R.L. Puurunen, W. Vandervorst, J. Appl. Phys. 96, 7686–7695 (2004)

    Article  CAS  Google Scholar 

  15. M. Schaefer, R. Schlaf, J. Appl. Phys. 118, 065306 (2015)

    Article  Google Scholar 

  16. S.K. Kim, G. Choi, S.Y. Lee, M. Seo, S.W. Lee, J.H. Han, H. Ahn, S. Han, C.S. Hwang, Adv. Mater. 20, 1429–1435 (2008)

    Article  CAS  Google Scholar 

  17. Z. Gao, D. Le, A. Khaniya, C.L. Dezelah, J. Woodruff, R.K. Kanjolia, W.E. Kaden, T.S. Rahman, P. Banerjee, Chem. Mater. 31, 1304–1317 (2019)

    Article  CAS  Google Scholar 

  18. H.-J. Sun, K.-M. Kim, Y. Kim, K.-J. Cho, K.-S. Park, J.-M. Lee, J.-S. Roh, Jpn. J. Appl. Phys. 42, 582 (2003)

    Article  CAS  Google Scholar 

  19. T.E. Hong, K.-Y. Mun, S.-K. Choi, J.-Y. Park, S.-H. Kim, T. Cheon, W.K. Kim, B.-Y. Lim, S. Kim, Thin Solid Films 520, 6100–6105 (2012)

    Article  CAS  Google Scholar 

  20. J. Swerts, A. Delabie, M.M. Salimullah, M. Popovici, M.-S. Kim, M. Schaekers, S. Van Elshocht, Electrochem. Solid-State Lett. 1, P19 (2012)

    Article  CAS  Google Scholar 

  21. Y. Kotsugi, S. Han, Y. Kim, T. Cheon, D.K. Nandi, R. Ramesh, N. Yu, K. Son, T. Tsugawa, S. Ohtake, R. Harada, Y. Park, B. Shong, S. Kim, Chem. Mater. 33(14), 5639–5651 (2021)

    Article  CAS  Google Scholar 

  22. C.T. Nguyen, J. Yoon, R. Khan, B. Shong, Appl. Surf. Sci. 488, 896–902 (2019)

    Article  CAS  Google Scholar 

  23. E.C. Ko, J.Y. Kim, H. Rhee, K.M. Kim, J.H. Han, Mater. Sci. Semicond. 156, 107258 (2023)

    Article  CAS  Google Scholar 

  24. S.H. Oh, J.M. Hwang, H. Park, D. Park, Y.E. Song, E.C. Ko, T.J. Park, T. Eom, T.M. Chung, Adv. Mater. Interfaces 10, 2202445 (2023)

    Article  CAS  Google Scholar 

  25. S.M. George, Chem. Rev. 110, 111–131 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. M. Kariniemi, J. Niinistö, M. Vehkamäki, M. Kemell, M. Ritala, M. Leskelä, M. Putkonen, J. Vac. Sci. Technol. A 30, 01A115 (2012)

    Article  Google Scholar 

  27. J. Dendooven, D. Deduytche, J. Musschoot, R.L. Vanmeirhaeghe, C. Detavernier, J. Electrochem. Soc. 157, G111 (2010)

    Article  CAS  Google Scholar 

  28. S. Novak, B. Lee, X. Yang, V. Misra, J. Electrochem. Soc. 157, H589 (2010)

    Article  CAS  Google Scholar 

  29. C. de Paula, N.E. Richey, L. Zeng, S.F. Bent, Chem. Mater. 32, 315–325 (2019)

    Article  Google Scholar 

  30. W.-J. Lee, E.-Y. Yun, S.W. Hong, S.-H. Kwon, Appl. Surf. Sci. 519, 146215 (2020)

    Article  CAS  Google Scholar 

  31. J.W. Shin, J. Lee, K. Kim, C. Kwon, Y. Bin Park, H. Park, K. Kim, H.S. Ahn, D. Shim, J. An, Ceram. Int. 48, 25651–25655 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 20220R1A2C4001205), Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2021R1A6A1A03039981), the Technology Innovation Program (No. 20010630) funded by the Ministry of Trade, Industry and Energy (MOTIE) of Korea, and Samsung Electronics Co., Ltd (IO230414-05954-01). The carbonyl cyclohexadiene ruthenium precursor was provided by Air Liquide.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dohyun Go or Jihwan An.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 253 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G., Kim, K., Shin, J.W. et al. Hydrogen Plasma-Assisted Atomic Layer Deposition of Ru with Low Oxygen Content. Korean J. Chem. Eng. 41, 1249–1254 (2024). https://doi.org/10.1007/s11814-024-00035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00035-2

Keywords

Navigation