Skip to main content

Advertisement

Log in

Removal of carbon residue precursor in waste plastic pyrolysis oil via oxidation

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel method to remove the carbon residue precursor from waste plastic pyrolysis oil has been developed to improve subsequent pyrolysis oil refining efficiency by reducing fouling. The carbon residue content of the pyrolysis oil that cannot be filtered is reduced by precipitating the carbon residue precursor from the pyrolysis oil under mild conditions. By emulsifying an aqueous solution of oxidant and the pyrolysis oil, the carbon residue precursor was oxidized at the oil-water interface without oxidizing the pyrolysis oil. Enhancing intermolecular interaction by hydrophilic functional groups formed by oxidation induces the precipitation of carbon residue precursors. The precursor removal was determined by the type and reaction time of oxidants. FeCl3 and H2O2 are efficient oxidants, and recycling those oxidant solutions can also remove the carbon residue precursor. The number of recycles with the precursor removal effect was determined by the amount of oxidant remaining in the aqueous solution. Also, a short 15-minute FeCl3 reaction can eliminate the precursor. Reducing the reaction time is expected to increase process efficiency, as unnecessary oxidation and energy consumption are decreased. Our research suggests the pretreatment of the pyrolysis oil to reduce the carbon residue content, thereby reducing the fouling during the subsequent pyrolysis oil refining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Lange, Green Chem., 4, 546 (2002).

    Article  CAS  Google Scholar 

  2. J.-P. Lange, ACS Sustain. Chem. Eng., 9, 15722 (2021).

    Article  CAS  Google Scholar 

  3. K. Ragaert, L. Delva and K. Van Geem, Waste Manage., 69, 24 (2017).

    Article  CAS  Google Scholar 

  4. A. Rahimi and J. Garciá, Nat. Rev. Chem., 1, 0046 (2017).

    Article  Google Scholar 

  5. C. Sun, Y. Jiang, Z. Zhang, S. Zhao and L. Guo, Macromol. Res., 29, 543 (2021).

    Article  CAS  Google Scholar 

  6. Z. Wei, Y. Wang, X. Fu, L. Jiang, Y. Wang, A. Yuan, H. Xu and J. Lei, Macromol. Res., 29, 562 (2021).

    Article  CAS  Google Scholar 

  7. L. Wang, S. Yan, L. Zhang, Y. Mai, W. Li and H. Pang, Macromol. Res., 29, 462 (2021).

    Article  CAS  Google Scholar 

  8. S. Jung and I. Ro, Korean J. Chem. Eng., 40, 693 (2023).

    Article  CAS  Google Scholar 

  9. J. Lai, Y. Meng, Y. Yan, E. Lester, T. Wu and C. H. Pang, Korean J. Chem. Eng., 38, 2235 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. H. Almohamadi, M. Alamoudi, U. Ahmed, R. Shamsuddin and K. Smith, Korean J. Chem. Eng., 38, 2208 (2021).

    Article  Google Scholar 

  11. J. Esteban, F. J. Colomer, M. Carlos and A. Gallardo, Project Manage. Eng., 1, 131 (2015).

    Article  Google Scholar 

  12. Y. Xue, S. Zhou, R. C. Brown, A. Kelkar and X. Bai, Fuel, 156, 40 (2015).

    Article  CAS  Google Scholar 

  13. Z. J. Low, J. C. Wong, K. H. Ngoi, C. H. Chia, H.-J. Kim, H.-C. Kim and M. Ree, Macromol. Res., 29, 230 (2021).

    Article  CAS  Google Scholar 

  14. S. Belbessai, A. Azara and N. Abatzoglou, Processes, 10, 733 (2022).

    Article  CAS  Google Scholar 

  15. M. Kusenberg, A. Eschenbacher, M. R. Djokic, A. Zayoud, K. Ragaert, S. De Meester and K. M. Van Geem, Waste Manage., 138, 83 (2022).

    Article  CAS  Google Scholar 

  16. M. Kusenberg, M. Roosen, A. Zayoud, M. R. Djokic, H. Dao Thi, S. De Meester, K. Ragaert, U. Kresovic and K. M. Van Geem, Waste Manage., 141, 104 (2022).

    Article  CAS  Google Scholar 

  17. A. De Lucas, P. Canizares, A. Durán and A. Carrero, Appl. Catal. A: Gen., 154, 221 (1997).

    Article  CAS  Google Scholar 

  18. A. Eschenbacher, R. J. Varghese, M. S. Abbas-Abadi and K. M. Van Geem, Chem. Eng. J., 428, 132087 (2022).

    Article  CAS  Google Scholar 

  19. S. Catak, K. Hemelsoet, L. Hermosilla, M. Waroquier and V. Van Speybroeck, Chem. Eur. J., 17, 12027 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. P. Das, S. Prasad and D. Kunzru, Ind. Eng. Chem. Res., 31, 2251 (1992).

    Article  CAS  Google Scholar 

  21. K. K. Ghosh and D. Kunzru, Ind. Eng. Chem. Res., 27, 559 (1988).

    Article  CAS  Google Scholar 

  22. Z. Dobó, G. Kecsmár, G. Nagy, T. Koós, G. Muránszky and M. Ayari, Energy Fuels, 35, 2347 (2021).

    Article  Google Scholar 

  23. R. Miandad, M. A. Barakat, A. S. Aburiazaiza, M. Rehan, I. M. I. Ismail and A. S. Nizami, Int. Biodeterior. Biodegrad., 119, 239 (2017).

    Article  CAS  Google Scholar 

  24. C. Vasile, M. A. Brebu, T. Karayildirim, J. Yanik and H. Darie, Fuel, 86, 477 (2007).

    Article  CAS  Google Scholar 

  25. M. Elsherif, Z. A. Manan and M. Z. Kamsah, J. Nat. Gas. Sci. Eng., 24, 346 (2015).

    Article  CAS  Google Scholar 

  26. M. A. Gadalla, Z. Olujic, P. J. Jansens, M. Jobson and R. Smith, Environ. Sci. Technol., 39, 6860 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. J. M. Lee, S. Shin, S. Ahn, J. H. Chun, K. B. Lee, S. Mun, S. G. Jeon, J. G. Na and N. S. Nho, Fuel Process. Technol., 119, 204 (2014).

    Article  CAS  Google Scholar 

  28. S. M. Al-Salem, A. Antelava, A. Constantinou, G. Manos and A. Dutta, J. Environ. Manage., 197, 177 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. ASTM Method D 4530-07 Standard Test Method for Determination of Carbon Residue (Micro Method).

  30. S. Choi, D. H. Byun, K. Lee, J.-D. Kim and N. S. Nho, J. Pet. Sci. Eng., 146, 21 (2016).

    Article  CAS  Google Scholar 

  31. M. R. Gray, R. R. Tykwinski, J. M. Stryker and X. Tan, Energy Fuels, 25, 3125 (2011).

    Article  CAS  Google Scholar 

  32. J. Murgich, Pet. Sci. Technol., 20, 983 (2002).

    Article  CAS  Google Scholar 

  33. M. E. Abdel Aziz, G. R. Saad and M. T. Abou El-khair, Macromol. Res., 30, 900 (2022).

    Article  CAS  Google Scholar 

  34. V. J. Nowdan and T. T. Tidwell, Acc. Chem. Res., 10, 252 (1977).

    Article  Google Scholar 

  35. R. E. Parker and N. S. Isaacs, Chem. Rev., 59, 737 (1959).

    Article  CAS  Google Scholar 

  36. R. Noyori, M. Aoki and K. Sato, Chem. Commun., 16, 1977 (2003).

    Article  Google Scholar 

  37. X. Lu, H. Xu, J. Yan, W.-J. Zhou, A. Liebens and P. Wu, J. Catal., 358, 89 (2018).

    Article  CAS  Google Scholar 

  38. Z. Y. Pastukhova, V. V. Levitin, E. A. Katsman and L. G. Bruk, Kinet. Catal., 62, 604 (2021).

    Article  CAS  Google Scholar 

  39. R. S. Varma and K. P. Naicker, Tetrahedron Lett., 39, 7463 (1998).

    Article  CAS  Google Scholar 

  40. A. Abiko, J. C. Roberts, T. Takemasa and S. Masamune, Tetrahedron Lett., 27, 4537 (1986).

    Article  CAS  Google Scholar 

  41. S. Wolfe, C. F. Ingold and R. U. Lemieux, J. Am. Chem. Soc., 103, 938 (1981).

    Article  CAS  Google Scholar 

  42. G. S. Brown, L. L. Barton and B. M. Thomson, Waste Manage., 23, 737 (2003).

    Article  CAS  Google Scholar 

  43. R. R. Warrier, M. Paul and M. V. Vineetha, Genet. Plant Physiol., 3, 90 (2013).

    Google Scholar 

  44. O. Khalipova, S. Kuznetsova and V. Kozik, AIP Conf. Proc., 1772 (2016).

  45. A. D. Awtrey and R. E. Connick, J. Am. Chem. Soc., 73, 1842 (1951).

    Article  CAS  Google Scholar 

  46. C. J. Hochanadel, J. Phys. Chem., 56, 587 (1952).

    Article  CAS  Google Scholar 

  47. T. M. Florence, J. Inorg. Biochem., 22, 221 (1984).

    Article  CAS  Google Scholar 

  48. R. C. C. Costa, M. de Fátima Fontes Lelis, L. C. A. Oliveira, J. D. Fabris, J. D. Ardisson, R. R. V. A. Rios, C. N. Silva and R. M. Lago, Catal. Commun., 4, 525 (2003).

    Article  CAS  Google Scholar 

  49. J. M. Fraile, C. Gil, J.A. Mayoral, B. Muel, L. Roldán, E. Vispe, S. Calderón and F. Puente, Appl. Catal. B: Environ., 180, 680 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Korea Evaluation Institute of Industrial Technology [Grant number 20015430].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeasung Park or Siyoung Q. Choi.

Ethics declarations

The authors declare that there is no competing financial interest.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Lee, J., Kim, S.C. et al. Removal of carbon residue precursor in waste plastic pyrolysis oil via oxidation. Korean J. Chem. Eng. 40, 2624–2631 (2023). https://doi.org/10.1007/s11814-023-1500-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1500-5

Keywords

Navigation