Skip to main content
Log in

Recyclable and Reprocessable Thermosetting Polyurea with High Performance Based on Diels-Alder Dynamic Covalent Crosslinking

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The thermosetting polyurea possessed high tensile strength and elongations at break due to strong intermolecular interactions, but their recycling and reprocessing remains a great challenge, especially at a temperature below 100 °C. Herein, the novel crosslinked polyurea with excellent recycling and reprocessing properties has been prepared by introducing the Diels-Alder dynamic covalent bond. The chemical structure, thermal mechanical properties and reprocessing performance of the crosslinked polyurea were investigated. The prepared polyurea has low relaxation time of ∼4 min at 80 °C for facile reprocessing. The tensile strength and elongation at break of crosslinked polyurea could reach 15.24 MPa and 529.2%, respectively, and its mechanical properties remain almost unchanged even after repeated processing. This work has realized the recycling of crosslinked polyurea, which has huge potential applications in environmental protection and recycling of waste plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ma, T. Li, X. Liu, and J. Zhu, Polym. Int., 65, 164 (2016).

    Article  CAS  Google Scholar 

  2. D. Montarnal, M. Capelot, F. Tournilhac, and L. Leibler, Science, 334, 965 (2011).

    Article  CAS  Google Scholar 

  3. L. Jiang, Q. Liu, Y. Lei, Y. Wang, Y. Zhao, and J. Lei, Mater. Chem. Frontiers, 3, 1601 (2019).

    Article  CAS  Google Scholar 

  4. B. Krishnakumar, R. V. S. P. Sanka, W. H. Binder, V. Parthasarthy, S. Rana, and N. Karak, Chem. Eng. J., 385, 123820 (2020).

    Article  CAS  Google Scholar 

  5. R. Geyer, J. R. Jambeck, and K. L. Law, Sci. Adv., 3, e1700782 (2017).

    Article  Google Scholar 

  6. W. Post, A. Susa, R. Blaauw, K. Molenveld, and R. J. I. Knoop, Polym. Rev., 60, 359 (2020).

    Article  CAS  Google Scholar 

  7. J. M. Garcia and M. L. Robertson, Science, 358, 870 (2017).

    Article  CAS  Google Scholar 

  8. L. Yue, M. Amirkhosravi, K. Ke, T. G. Gray, and I. Manas-Zloczower, ACS Appl. Mater. Interfaces, 13, 3419 (2021).

    Article  CAS  Google Scholar 

  9. X. Li, R. Yu, Y. He, Y. Zhang, X. Yang, X. Zhao, and W. Huang, ACS Macro Lett., 8, 1511 (2019).

    Article  CAS  Google Scholar 

  10. P. Chakma and D. Konkolewicz, Angew. Chem. Int. Ed., 58, 9682 (2019).

    Article  CAS  Google Scholar 

  11. Y. Yang, Z. Ye, X. Liu, and J. Su, J. Mater. Chem. C, 8, 5280 (2020).

    Article  CAS  Google Scholar 

  12. X. Fu, A. Yuan, Y. Lei, Z. Wei, H. Xu, and J. Lei, Sol. Energy Mater. Sol. Cells, 225, 111031 (2021).

    Article  CAS  Google Scholar 

  13. X. Fu, B. Wu, Y. Yuan, and J. Lei, J. Energy Storage, 36, 102364 (2021).

    Article  Google Scholar 

  14. Y. Nishimura, J. Chung, H. Muradyan, and Z. Guan, J. Am. Chem. Soc., 139, 14881 (2017).

    Article  CAS  Google Scholar 

  15. G. M. Scheutz, J. J. Lessard, M. B. Sims, and B. S. Sumerlin, J. Am. Chem. Soc., 141, 16181 (2019).

    Article  CAS  Google Scholar 

  16. Y. Liu, Z. Tang, S. Wu, and B. Guo, ACS Macro Lett., 8, 193 (2019).

    Article  CAS  Google Scholar 

  17. L. Cao, J. Fan, J. Huang, and Y. Chen, J. Mater. Chem. A, 7, 4922 (2019).

    Article  CAS  Google Scholar 

  18. J. Dodge, in Synthetic Methods in Step-Growth Polymers, 2003, pp 197–263.

  19. B. Qin, S. Zhang, P. Sun, B. Tang, Z. Yin, X. Cao, Q. Chen, J.-F. Xu, and X. Zhang, Adv. Mater., 32, 2000096 (2020).

    Article  CAS  Google Scholar 

  20. E. Delebecq, J.-P. Pascault, B. Boutevin, and F. Ganachaud, Chem. Rev., 113, 80 (2013).

    Article  CAS  Google Scholar 

  21. Z. Xiang, C. Chu, H. Xie, T. Xiang, and S. Zhou, ACS Appl. Mater. Interfaces, 13, 1463 (2021).

    Article  CAS  Google Scholar 

  22. Y. Zhang, H. Ying, K. R. Hart, Y. Wu, A. J. Hsu, A. M. Coppola, T. A. Kim, K. Yang, N. R. Sottos, S. R. White, and J. Cheng, Adv. Mater., 28, 7646 (2016).

    Article  CAS  Google Scholar 

  23. Z. Wang, S. Gangarapu, J. Escorihuela, G. Fei, H. Zuilhof, and H. Xia, J. Mater. Chem. A, 7, 15933 (2019).

    Article  CAS  Google Scholar 

  24. Y. Jin, Z. Lei, P. Taynton, S. Huang, and W. Zhang, Matter, 1, 1456 (2019).

    Article  Google Scholar 

  25. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, Science, 295, 1698 (2002).

    Article  CAS  Google Scholar 

  26. B. Wu, Y. Wang, Z. Liu, Y. Liu, X. Fu, W. Kong, L. Jiang, Y. Yuan, X. Zhang, and J. Lei, J. Mater. Chem. A, 7, 21802 (2019).

    Article  CAS  Google Scholar 

  27. H.-Y. Duan, Y.-X. Wang, L.-J. Wang, Y.-Q. Min, X.-H. Zhang, and B.-Y. Du, Macromolecules, 50, 1353 (2017).

    Article  CAS  Google Scholar 

  28. B. Zhang, Z. A. Digby, J. A. Flum, E. M. Foster, J. L. Sparks, and D. Konkolewicz, Polym. Chem., 6, 7368 (2015).

    Article  CAS  Google Scholar 

  29. C. Gong, J. Liang, W. Hu, X. Niu, S. Ma, H. T. Hahn, and Q. Pei, Adv. Mater., 25, 4186 (2013).

    Article  CAS  Google Scholar 

  30. T.-P. Huynh and H. Haick, Adv. Mater., 28, 138 (2016).

    Article  CAS  Google Scholar 

  31. Q. Li, S. Ma, P. Li, B. Wang, H. Feng, N. Lu, S. Wang, Y. Liu, X. Xu, and J. Zhu, Macromolecules, 54, 1742 (2021).

    Article  CAS  Google Scholar 

  32. A. Gandini, A. J. F. Carvalho, E. Trovatti, R. K. Kramer, and T. M. Lacerda, Europ. J. Lipid Sci. Technol., 120, 1700091 (2018).

    Article  Google Scholar 

  33. P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, P. Sun, T. Joncheray, and Y. Zhang, New J. Chem., 38, 770 (2014).

    Article  CAS  Google Scholar 

  34. X. Kuang, G. Liu, X. Dong, and D. Wang, Mater. Chem. Frontiers, 1, 111 (2017).

    Article  CAS  Google Scholar 

  35. S. K. Raut, P. K. Behera, T. S. Pal, P. Mondal, K. Naskar, and N. K. Singha, Chem. Commun., 57, 1149 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is financially supported by State Key Laboratory of Polymer Materials Engineering (Grant No. sklpme2020-2-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Lei.

Additional information

Supporting information

Information is available regarding the preparation of samples, crosslinked structure characterization, creep and recovery curves, etc. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Wang, Y., Fu, X. et al. Recyclable and Reprocessable Thermosetting Polyurea with High Performance Based on Diels-Alder Dynamic Covalent Crosslinking. Macromol. Res. 29, 562–568 (2021). https://doi.org/10.1007/s13233-021-9064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9064-x

Keywords

Navigation