Skip to main content

Advertisement

Log in

Integration of thermochemical conversion processes for waste-to-energy: A review

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

As a strategy for mitigating climate change and waste problems, waste-to-energy has rapidly emerged. Thermochemical conversion is a widely used waste-to-energy process that involves the degradation of waste structure at high temperatures under oxygenic or anoxygenic atmosphere. Integration of different thermochemical conversion processes enhances the overall efficiency of energy recovery from waste substances. To maximize the enhancement of waste-to-energy efficiency, the selection of thermochemical conversion system configurations is critical. Understanding possible configurations of hybrid thermochemical waste conversion processes (e.g., pyrolysis, gasification, hydrothermal carbonization, and aqueous-phase reforming) is necessary for further development and propagation of the integrated hybrid thermochemical waste conversion processes. To this end, we provide a systematic review of existing hybrid thermochemical waste conversion systems that integrate different thermochemical conversion processes for waste-to-energy. The challenges and future research suggestions regarding integrated thermochemical waste conversion processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Sharma and S. Jain, Soc. Responsib. J., 16, 917 (2020).

    Google Scholar 

  2. J. Han, J. Byun, O. Kwon and J. Lee, Renew. Sust. Energ. Rev., 160, 112336 (2022).

    CAS  Google Scholar 

  3. L. Sun, W Liu, M. Fujii, Z. Li, J. Ren and Y. Dou, An overview of waste-to-energy: Feedstocks, technologies and implementations, Waste-to-energy, Ren, J., ed., Academic Press, 1 (2020).

  4. N. B. Klinghoffer, N. J. Themelis and M. J. Castaldi, Waste to energy (wte): An introduction, Waste to energy conversion technology, Klinghoffer, N. B. and Castaldi, M. J., eds., Woodhead Publishing, 3 (2013).

  5. A. Chauhan and R. P. Saini, Renew. Sust. Energ.. Rev, 59, 388 (2016).

    Google Scholar 

  6. J.-Y. Kim, H. W Lee, S. M. Lee, J. Jae and Y.-K. Park, Bioresour. Technol., 279, 373 (2019).

    CAS  PubMed  Google Scholar 

  7. H. W Ryu, D. H. Kim, J. Jae, S. S. Lam, E. D. Park and Y.-K. Park, Bioresour. Technol, 310, 123473 (2020).

    CAS  PubMed  Google Scholar 

  8. O. Ali Qamar, F. Jamil, M. Hussain, A. a. H. Al-Muhtaseb, A. Inayat, A. Waris, P. Akhter and Y.-K. Park, Chem. Eng. J, 454, 140240 (2023).

    CAS  Google Scholar 

  9. M. W. Seo, S. H. Lee, H. Nam, D. Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Bioresour. Technol., 343, 126109 (2022).

    CAS  PubMed  Google Scholar 

  10. S. You, Y. S. Ok, S. S. Chen, D. C. W Tsang, E. E. Kwon, J. Lee and C.-H. Wang, Bioresour. Technol., 246, 242 (2017).

    CAS  PubMed  Google Scholar 

  11. J. Lee, D. Choi, E. E. Kwon and Y. S. Ok, Energy, 137, 412 (2017).

    CAS  Google Scholar 

  12. J. Lee, A. K. Sarmah and E. E. Kwon, Production and formation of biochar, Biochar from biomass and waste, Ok, Y. S., Tsang, D. C. W., Bolan, N. and Novak, J. M., eds., Elsevier, 3 (2019).

  13. X. L. Yin, C. Z. Wu, S. P. Zheng and Y. Chen, Biomass Bioenergy, 23, 181 (2002).

    CAS  Google Scholar 

  14. M. Hiloidhari and D. C. Baruah, Energy Sustain. Dev., 15, 214 (2011).

    Google Scholar 

  15. S. Shackley, S. Carter, T. Knowles, E. Middelink, S. Haefele and S. Haszeldine, Energy Policy, 41, 618 (2012).

    CAS  Google Scholar 

  16. L. Cutz, G. Berndes and F. Johnsson, Biofuels, Bioprod. Bioref., 13, 1289 (2019).

    CAS  Google Scholar 

  17. S. Carley, Energy Policy, 37, 3071 (2009).

    Google Scholar 

  18. C. Park, E.-S. Jang and Y.-M. Kim, Korean J. Chem. Eng. (2023), doi: https://doi.org/10.1007/s11814-022-1305-y.

  19. J. Lai, Y. Meng, Y. Yan, E. Lester, T. Wu and C. H. Pang, Korean J. Chem. Eng., 38, 2235 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. M. A. A. Khalid, N. Abdullah, M. N. M. Ibrahim, R. M. Taib, S. J. M. Rosid, N. M. Shukri, N. Yahaya and W. N. B. W. Abdullah, Korean J. Chem. Eng., 39, 1487 (2022).

    CAS  Google Scholar 

  21. P. Malik, M. Awasthi and S. Sinha, Int. J. Energy Res., 45, 3464 (2021).

    Google Scholar 

  22. G. Chen, J. Andries, H. Spliethoff, M. Fang and P. J. van de Enden, Sol. Energy, 76, 345 (2004).

    CAS  Google Scholar 

  23. Y. Liu and Y. Liu, Environ. Sci. Technol., 39, 3855 (2005).

    CAS  PubMed  Google Scholar 

  24. S. Ashok, Renew. Energy, 32, 1155 (2007).

    Google Scholar 

  25. J. L. Bernal-Agustín and R. Dufo-López, Renew. Sust. Energ. Rev., 13, 2111 (2009).

    Google Scholar 

  26. X. Wang, A. Palazoglu and N. H. El-Farra, Appl. Energy, 143, 324 (2015).

    Google Scholar 

  27. J. Lee, K.-Y. A. Lin, S. Jung and E. E. Kwon, Chem. Eng. J., 452, 139218 (2023).

    CAS  Google Scholar 

  28. J. Lee, S. Kim, S. You and Y.-K. Park, Renew. Sust. Energ. Rev., 178, 113240 (2023).

    CAS  Google Scholar 

  29. P. Tanger, J. Field, C. Jahn, M. DeFoort and J. Leach, Front. Plant Sci., 4, 218 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. B. R. Pinkard, D. J. Gorman, K. Tiwari, E. G. Rasmussen, J. C. Kramlich, P. G. Reinhall and I. V. Novosselov, Heliyon, 5, e01269 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. S. Valizadeh, H. Hakimian, A. Farooq, B.-H. Jeon, W-H. Chen, S. Hoon Lee, S.-C. Jung, M. Won Seo and Y.-K. Park, Bioresour. Technol., 365, 128143 (2022).

    CAS  PubMed  Google Scholar 

  32. T. Maneerung, X. Li, C. Li, Y. Dai and C.-H. Wang, J. Clean. Prod., 188, 69 (2018).

    CAS  Google Scholar 

  33. A. F. Sotoodeh, F. Ahmadi, Z. Ghaffarpour, M. Ebadollahi, H. Nasrollahi and M. Amidpour, Sustain. Energy Technol Assess., 49, 101649 (2022).

    Google Scholar 

  34. S. Safarian, R. Unnthorsson and C. Richter, Energy, 197, 117268 (2020).

    CAS  Google Scholar 

  35. S. Lee, J.-C. Seo, H.-J. Chun, S. Yang, E.-h. Sim, J. Lee and Y. T. Kim, Catal. Sci. Technol., 12, 5814 (2022).

    CAS  Google Scholar 

  36. R. Houston, N. Labbé, D. Hayes, C. S. Daw and N. Abdoulmoumine, React. Chem. Eng., 4, 1814 (2019).

    CAS  Google Scholar 

  37. J. R. Phillips, R. L. Huhnke and H. K. Atiyeh, Fermentation, 3, 28 (2017).

    Google Scholar 

  38. N. Lee, J. Joo, K.-Y. A. Lin and J. Lee, J. Environ. Chem. Eng., 9, 106362 (2021).

    CAS  Google Scholar 

  39. C. Park, N. Lee, J. Kim and J. Lee, Environ. Pollut., 270, 116045 (2021).

    CAS  PubMed  Google Scholar 

  40. C. Park, N. Lee, I.S. Cho, B. Ahn, H.K. Yu and J. Lee, Korean J. Chem. Eng., 39, 3343 (2022).

    CAS  Google Scholar 

  41. D. Lee, H. Nam, M. Won Seo, S. Hoon Lee, D. Tokmurzin, S. Wang and Y.-K. Park, Chem. Eng. J., 447, 137501 (2022).

    CAS  Google Scholar 

  42. S. Kim, N. Lee, S. W. Lee, Y. T. Kim and J. Lee, Chem. Eng. J., 412, 128626 (2021).

    CAS  Google Scholar 

  43. S. Pyo, Y.-M. Kim, Y. Park, S. B. Lee, K.-S. Yoo, M. Ali Khan, B.-H. Jeon, Y. Jun Choi, G. Hoon Rhee and Y.-K. Park, J. Ind. Eng. Chem., 103, 136 (2021).

    CAS  Google Scholar 

  44. Y. Lee, S.W. Lee, Y.F. Tsang, Y.T. Kim and J. Lee, Chem. Eng. J., 387, 124194 (2020).

    Google Scholar 

  45. S. Kim, J. Byun, H. Park, N. Lee, J. Han and J. Lee, Energy, 241, 122876 (2022).

    CAS  Google Scholar 

  46. S. W. Banks and A. V. Bridgwater, Catalytic fast pyrolysis for improved liquid quality, Handbook of biofuels production (second edition), Luque, R., Lin, C. S. K., Wilson, K. and Clark, J., eds., Wood-head Publishing, 391 (2016).

  47. J. Lee, K.-H. Kim and E. E. Kwon, Renew. Sust. Energ. Rev., 77, 70 (2017).

    CAS  Google Scholar 

  48. H. Tan, C. T. Lee, P. Y. Ong, K. Y. Wong, C. P. C. Bong, C. Li and Y. Gao, IOP Conf. Ser.: Mater. Sci. Eng., 1051, 012075 (2021).

    CAS  Google Scholar 

  49. S. Kim, E. E. Kwon, Y. T. Kim, S. Jung, H. J. Kim, G. W. Huber and J. Lee, Green Chem., 21, 3715 (2019).

    CAS  Google Scholar 

  50. S. T. Yoganandham, G. Sathyamoorthy and R. R. Renuka, Emerging extraction techniques: Hydrothermal processing, Sustainable seaweed technologies, Torres, M. D., Kraan, S. and Dominguez, H., eds., Elsevier, 191 (2020).

  51. H.S. Kambo and A. Dutta, Renew. Sust. Energ. Rev., 45, 359 (2015).

    CAS  Google Scholar 

  52. H. Ahmed Baloch, S. Nizamuddin, M. T. H. Siddiqui, N. M. Mubarak, D. K. Dumbre, M. P. Srinivasan and G. J. Griffin, J. Environ. Chem. Eng., 6, 6589 (2018).

    CAS  Google Scholar 

  53. A. Funke and F. Ziegler, Biofuels, Bioprod. Bioref., 4, 160 (2010).

    CAS  Google Scholar 

  54. J. G. Lynam, M. Toufiq Reza, V. R. Vasquez and C. J. Coronella, Fuel, 99, 271 (2012).

    CAS  Google Scholar 

  55. S.S. Qureshi, Premchand, M. Javed, S. Saeed, R. Abro, S. A. Mazari, N. M. Mubarak, M. T. H. Siddiqui, H. A. Baloch and S. Nizamuddin, Korean J. Chem. Eng., 38, 797 (2021).

    CAS  Google Scholar 

  56. T. Ariyawansha, D. Abeyrathna, T. Ahamed and R. Noguchi, Biomass Conv. Bioref., 12, 27 (2022).

    CAS  Google Scholar 

  57. Z. Yao and X. Ma, Energy, 141, 1156 (2017).

    CAS  Google Scholar 

  58. R. D. Cortright, R. R. Davda and J. A. Dumesic, Nature, 418, 964 (2002).

    CAS  PubMed  Google Scholar 

  59. G. Wen, Y Xu, Z. Xu and Z. Tian, Catal. Commun., 11, 522 (2010).

    CAS  Google Scholar 

  60. G. Wen, Y. Xu, Q. Liu, C. Wang, H. Liu and Z. Tian, Catal. Lett., 141, 1851 (2011).

    CAS  Google Scholar 

  61. M. B. Valenzuela, C. W Jones and P. K. Agrawal, Energy Fuels, 20, 1744 (2006).

    CAS  Google Scholar 

  62. G. Zoppi, G. Pipitone, R. Pirone and S. Bensaid, Catal. Today, 387, 224 (2022).

    CAS  Google Scholar 

  63. R. R. Davda, J. W Shabaker, G. W Huber, R. D. Cortright and J. A. Dumesic, Appl. Catal. B: Environ., 56, 171 (2005).

    CAS  Google Scholar 

  64. P. D. Vaidya and J. A. Lopez-Sanchez, ChemistrySelect, 2, 6563 (2017).

    CAS  Google Scholar 

  65. A. Fasolini, R. Cucciniello, E. Paone, F. Mauriello and T. Tabanelli, Catalysts, 9, 917 (2019).

    CAS  Google Scholar 

  66. G. Pipitone, G. Zoppi, R. Pirone and S. Bensaid, Int. J. Hydrog. Energy, 47, 151 (2022).

    CAS  Google Scholar 

  67. L. He, J. Yang and D. Chen, Hydrogen from biomass: Advances in thermochemical processes, Renewable hydrogen technologies, Gandia, L. M., Arzamendi, G. and Diéguez, P. M., eds., Elsevier, Amsterdam, Netherlands, 111 (2013).

    Google Scholar 

  68. R. Alipour Moghadam, S. Yusup, W. Azlina, S. Nehzati and A. Tavasoli, Energy Convers. Manag., 87, 670 (2014).

    CAS  Google Scholar 

  69. N. Gil-Lalaguna J. L. Sánchez, M. B. Murillo, M. Atienza-Martínez and G. Gea, Energy, 76, 652 (2014).

    CAS  Google Scholar 

  70. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, E. Rodríguez and G. Gea, Chem. Eng. J., 248, 373 (2014).

    CAS  Google Scholar 

  71. N. Gil-Lalaguna, J. L. Sánchez, M. B. Murillo, V. Ruiz and G. Gea, Fuel, 129, 147 (2014).

    CAS  Google Scholar 

  72. K. Im-orb, T. Detchusananard, P. Ponpesh and A. Arpornwichanop, Energy Procedia, 142, 204 (2017).

    Google Scholar 

  73. Z. Chen, S. Gao and G. Xu, Appl. Energy, 208, 1527 (2017).

    CAS  Google Scholar 

  74. B. Dai, L. Zhang, J.-f. Cui, A. Hoadley and L. Zhang, Fuel Process. Technol., 155, 21 (2017).

    CAS  Google Scholar 

  75. J. Zhang, M. Ren, X. Li, Y. Ge, F. Gao, H. Chen, Q. Hao and X. Ma, Int. J. Hydrog. Energy, 44, 19742 (2019).

    CAS  Google Scholar 

  76. M. Faraji and M. Saidi, Int. J. Hydrog. Energy, 46, 18844 (2021).

    CAS  Google Scholar 

  77. M. Faraji and M. Saidi, Process Saf. Environ. Prot., 171, 874 (2023).

    CAS  Google Scholar 

  78. Q.-a. Xiong, Y. Zhang, Y. Huang, J. Li and W. Zhang, Fuel, 324, 124650 (2022).

    CAS  Google Scholar 

  79. M. Yan, Y. Liu, Y. Song, A. Xu, G. Zhu, J. Jiang and D. Hantoko, Energy, 242, 123054 (2022).

    CAS  Google Scholar 

  80. A. S. Oliveira, A. Sarrión, J. A. Baeza, E. Diaz, L. Calvo, A. F. Mohedano and M. A. Gilarranz, Chem. Eng. J., 442, 136301 (2022).

    CAS  Google Scholar 

  81. M. Rezaei and M. Mehrpooya, Energy Convers. Manag., 161, 35 (2018).

    CAS  Google Scholar 

  82. T. Detchusananard, N. Wuttipisan, P. Limleamthong, P. Prasert-charoensuk, F. Maréchal and A. Arpornwichanop, Energy Convers. Manag., 258, 115465 (2022).

    CAS  Google Scholar 

  83. H.I. Abdel-Shafy and M.S.M. Mansour, Egypt. J. Pet., 27, 1275 (2018).

    Google Scholar 

  84. S. Kathi, Bioenergy from phytoremediated phytomass of aquatic plants via gasification, Bioremediation and bioeconomy, Prasad, M. N. V., ed., Elsevier, Amsterdam, Nederland, 111 (2016).

    Google Scholar 

  85. M. Asadullah, Renew. Sust. Energ. Rev., 29, 201 (2014).

    CAS  Google Scholar 

  86. B. Buragohain, P. Mahanta and V. S. Moholkar, Renew. Sust. Energ. Rev., 14, 73 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (No. RS-2023-00209044). This research was also supported by the C1 Gas Refinery Program through the NRF, funded by the Korean government (MSIT) (No. 2017M3D3 A1A01037001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jechan Lee.

Additional information

Conflicts of Interes

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H., Kim, Y.T., Tsang, Y.F. et al. Integration of thermochemical conversion processes for waste-to-energy: A review. Korean J. Chem. Eng. 40, 1815–1821 (2023). https://doi.org/10.1007/s11814-023-1494-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1494-z

Keywords

Navigation