Skip to main content
Log in

Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The electrocatalytic reduction (ECR) of furfural (FF) for synthesis of 2-methylfuran (MF) is investigated, using a sandwich-structured electrode (NiCu/CalZIF/CP), with an inner substrate of carbon paper (CP), a surface layer of Ni-Cu bimetallic catalyst (metal layer), and a middle layer of calcined Ni-ZIF-8 (CalZIF) particles. It is found that the production rate (PR) and Faradaic efficiency (FE) of MF increase with the increase of metal loading, while the variation becomes stable in higher dosages. The FE of MF illustrates a rising-first-and-declining-later trend with the increase of current density, but in a slight degree compared with the system without CalZIF, indicating a better stability on anti-interference of current. The PR of MF increases with increasing current first and then becomes stable, which differs to the reducing trend in higher currents in the system without CalZIF. Under the optimized conditions with H2SO4 concentration of 0.2 M and current density of 12 mA·cm−2, the total FE of organics, the FE of MF, and the PR of MF, respectively reach to their maximum values of 82%, 66% and 75 µmol·cm−2·h−1, under the catalytic effects of the composite electrode with optimal Ni/Cu ratio of 0.04, metal layer loading amount of 3 mg·cm−2, and CalZIF dosage of 1 mg·cm−2. The electrode can be regenerated after re-elctrodeposition treatment. The deactivation of catalyst is found relative to the loss and agglomeration of the metals, which is resulted from the corrosion and rearrangement of the metal atoms over the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CalZIF:

calcined Ni-ZIF-8

CB:

carbon balance

CP:

carbon paper

DMF:

N, N-dimethylformamide

EA:

ethyl acetate

ECR:

electrocatalytic reduction

ED:

electrodeposition

FA:

furfuryl alcohol

FE:

faradaic efficiency

FF:

furfural

HER:

hydrogen evolution reaction

MF:

2-methylfuran

MOF:

metal-organic framework

PR:

production rate

WE:

working electrode

References

  1. C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque and F. Mauriello, Chem. Soc. Rev., 49(13), 4273 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau and S. Royer, Chem. Rev., 118(22), 11023 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. S. Bhogeswararao and D. Srinivas, J. Catal., 327, 65 (2015).

    Article  CAS  Google Scholar 

  4. A. Bohre, S. Dutta, B. Saha and M. M. Abu-Omar, ACS Sustain. Chem. Eng., 3(7), 1263 (2015).

    Article  CAS  Google Scholar 

  5. S. Shiva Kumar and H. Lim, Energy Rep., 8, 13793 (2022).

    Article  Google Scholar 

  6. L. Wang, Y. Zhu, Z. Zeng, C. Lin, M. Giroux, L. Jiang, Y. Han, J. Greeley, C. Wang and J. Jin, Nano Energy, 31, 456 (2017).

    Article  Google Scholar 

  7. H. Kim, H. Park, H. Bang and S.-K. Kim, Korean J. Chem. Eng., 37(8), 1275 (2020).

    Article  CAS  Google Scholar 

  8. R. M. Al Radadi and M. A. M. Ibrahim, Korean J. Chem. Eng., 38(1), 152 (2021).

    Article  Google Scholar 

  9. Y. Lei, Z. Wang, A. Bao, X. Tang, X. Huang, H. Yi, S. Zhao, T. Sun, J. Wang and F. Gao, Chem. Eng. J., 453, 139663 (2023).

    Article  CAS  Google Scholar 

  10. X. An, S. Li, X. Hao, Z. Xie, X. Du, Z. Wang, X. Hao, A. Abudula and G. Guan, Renew. Sust. Energ. Rev., 143, 110952 (2021).

    Article  CAS  Google Scholar 

  11. W. J. Wang, L. Scudiero and S. Ha, Korean J. Chem. Eng., 39(3), 461 (2022).

    Article  CAS  Google Scholar 

  12. F. Rehman, M. Delowar Hossain, A. Tyagi, D. Lu, B. Yuan and Z. Luo, Mater. Today, 44, 136 (2021).

    Article  CAS  Google Scholar 

  13. S. H. Jeon, K. Kim, H. Cho, H. C. Yoon and J.-I. Han, Korean J. Chem. Eng., 38(6), 1272 (2021).

    Article  CAS  Google Scholar 

  14. X. Lu, J. Wang, W. Peng, N. Li, L. Liang, Z. Cheng, B. Yan, G. Yang and G. Chen, Fuel, 331, 125845 (2023).

    Article  CAS  Google Scholar 

  15. Y. Du, X. Chen and C. Liang, Mol. Catal., 535, 112831 (2023).

    Article  CAS  Google Scholar 

  16. U. Sanyal, K. Koh, L. C. Meyer, A. Karkamkar and O. Y. Gutiérrez, J. Appl. Electrochem., 51(1), 27 (2021).

    Article  CAS  Google Scholar 

  17. P. Zhou, L. Li, V. S. S. Mosali, Y. Chen, P. Luan, Q. Gu, D. R. Turner, L. Huang and J. Zhang, Angew. Chem. Int. Ed., 61(13), e202117809 (2022).

    Article  CAS  Google Scholar 

  18. S. Jung and E. J. Biddinger, ACS Sustain. Chem. Eng., 4(12), 6500 (2016).

    Article  CAS  Google Scholar 

  19. Z. Yang, X. Chou, H. Kan, Z. Xiao and Y. Ding, ACS Sustain. Chem. Eng., 10(22), 7418 (2022).

    Article  CAS  Google Scholar 

  20. S. Jung and E. J. Biddinger, Energy Technol., 6(7), 1370 (2018).

    Article  CAS  Google Scholar 

  21. S. Jung, A. N. Karaiskakis and E. J. Biddinger, Catal. Today, 323, 26 (2019).

    Article  CAS  Google Scholar 

  22. P. Zhou, Y. Chen, P. Luan, X. Zhang, Z. Yuan, S.-X. Guo, Q. Gu, B. Johannessen, M. Mollah, A. L. Chaffee, D. R. Turner and J. Zhang, Green Chem., 23(8), 3028 (2021).

    Article  CAS  Google Scholar 

  23. P. Nilges and U. Schröder, Energy Environ. Sci., 6(10), 2925 (2013).

    Article  CAS  Google Scholar 

  24. A. S. May and E. J. Biddinger, ACS Catal., 10(5), 3212 (2020).

    Article  CAS  Google Scholar 

  25. X. H. Chadderdon, D. J. Chadderdon, J. E. Matthiesen, Y. Qiu, J. M. Carraher, J.-P. Tessonnier and W. Li, J. Am. Chem. Soc., 139(40), 14120 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. R. J. Dixit, K. Bhattacharyya, V. K. Ramani and S. Basu, Green Chem., 23(11), 4201 (2021).

    Article  CAS  Google Scholar 

  27. X. Lan, N. Huang, J. Wang and T. Wang, ChemComm, 54(6), 584 (2018).

    CAS  Google Scholar 

  28. A. S. May, S. M. Watt and E. J. Biddinger, React. Chem. Eng., 6(11), 2075 (2021).

    Article  CAS  Google Scholar 

  29. N. Shan, M. K. Hanchett and B. Liu, J. Phys. Chem. C, 121(46), 25768 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by the National Key R&D Program of China (2019YFC1906700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze Wang.

Ethics declarations

There is no conflict of interest in the work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Wang, Z. & Li, S. Electrocatalytic reduction of furfural for selective preparation of 2-methylfuran over a sandwich-structured Ni-Cu bimetallic catalyst. Korean J. Chem. Eng. 40, 2646–2656 (2023). https://doi.org/10.1007/s11814-023-1472-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1472-5

Keywords

Navigation