Skip to main content
Log in

Crystal engineering of quercetin via combined adsorption of polyvinylpyrrolidone and tannin

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In nature, the structures and properties of biominerals are frequently precisely and synergistically controlled by two types of additives. However, the combination of two different types of additives has not often been thoroughly examined in the context of chemical, pharmaceutical, and biological crystallization. A combination of a polymeric additive, polyvinylpyrrolidone (PVP), and a low-molecular-weight additive, tannin (TA), was employed to explore the potential for crystal engineering with quercetin as an active compound. The nucleation time was significantly decreased by the additives, and the resulting crystals contained significant amounts of PVP and TA. FTIR spectroscopy analysis was used to confirm the specific molecular interaction between quercetin, PVP, and TA, and the results were consistent with the results of broadened peaks of XRPD, which indicated decreased particle size and aspect ratio. The melting point of quercetin was significantly depressed as the heat of fusion decreased. When two or more additives are combined, it is possible to obtain crystals with properties and structures that cannot be obtained by regular crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Choi, H. Lee, M. K. Lee and J. Lee, J. Pharm. Sci., 101, 2941 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. S.-H. Lee, G.-H. Lee, K.-H. Lee, M. Jazbinsek, B. J. Kang, F. Rotermund and O.-P. Kwon, Cryst. Growth Des., 16, 3555 (2016).

    Article  CAS  Google Scholar 

  3. Z. X. Ting and L. J. Yan, Macromol. Res., 30, 325 (2022).

    Article  CAS  Google Scholar 

  4. R.-Q. Song and H. Cölfen, Cryst. Eng. Comm., 13, 1249 (2011).

    Article  CAS  Google Scholar 

  5. E. Kim, S. Agarwal, N. Kim, F. S. Hage, V. Leonardo, A. Gelmi and M. M. Stevens, ACS Nano, 13, 2888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Mann, B. R. Heywood, S. Rajam and J. D. Birchall, Nature, 334, 692 (1988).

    Article  CAS  Google Scholar 

  7. G. Falini, S. Manara, S. Fermani, N. Roveri, M. Goisis, G. Manganelli and L. Cassar, Cryst. Eng. Comm., 9, 1162 (2007).

    Article  CAS  Google Scholar 

  8. E. Pouget, E. Dujardin, A. Cavalier, A. Moreac, C. Valéry, V. Marchi-Artzner, T. Weiss, A. Renault, M. Paternostre and F. Artzner, Nat. Mater., 6, 434 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. S. Xu, D. Cao, Y. Liu and Y. Wang, Cryst. Growth Des., 22, 2001 (2021).

    Article  Google Scholar 

  10. S. Karthika, T. Radhakrishnan and P. Kalaichelvi, Cryst. Growth Des., 16, 6663 (2016).

    Article  CAS  Google Scholar 

  11. H. Pyles, S. Zhang, J. J. De Yoreo and D. Baker, Nature, 571, 251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Zhang, J. Wang, F. Yu, X. Cheng, Y. Hao, Y. Liu, X. Huang, T. Wang and H. Hao, Cryst. Eng. Comm., 24, 854 (2022).

    Article  CAS  Google Scholar 

  13. O.-P. Kwon, S.-J. Kwon, M. Jazbinsek, A. Choubey, P. A. Losio, V. Gramlich and P. Günter, Cryst. Ggrowth Des., 6, 2327 (2006).

    Article  CAS  Google Scholar 

  14. B. Ni, G. Gonzalez-Rubio and H. Cölfen, Acc. Chem. Res., 55, 1599 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. D. S. Frank, Q. Zhu and A. J. Matzger, Mol. Pharm., 16, 3720 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. C. P. Price, A. L. Grzesiak and A. J. Matzger, J. Am. Chem. Soc., 127, 5512 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. T. Munk, S. Baldursdottir, S. Hietala, T. Rades, S. Kapp, M. Nuopponen, K. Kalliomaki, H. Tenhu and J. Rantanen, Mol. Pharm., 9, 1932 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. H. Fan, L. Wang, X. Feng, Y. Bu, D. Wu and Z. Jin, Macromol. Res., 50, 666 (2017).

    Article  CAS  Google Scholar 

  19. G. S. Kelly, Quercetin, Altern. Med. Rev., 16, 172 (2011).

    PubMed  Google Scholar 

  20. H. Kim, J. Kim, O.-P. Kwon and J. Lee, Macromol. Res., 28, 1276 (2020).

    Article  CAS  Google Scholar 

  21. C. A. Kadar, M. Faisal, N. Maruthi, N. Raghavendra, B. Prasanna and S. Manohara, Macromol. Res., 30, 638 (2022).

    Article  Google Scholar 

  22. K. Ibtehaj, M. H. H. Jumali, S. Al-Bati, P. C. Ooi, B. A. Al-Asbahi and A. A. A. Ahmed, Macromol. Res., 30, 172 (2022).

    Article  CAS  Google Scholar 

  23. S. Kang, H. Kwon, J. Jeong, Y.-C. Kim and J. Park, Macromol. Res., 30, 454 (2022).

    Article  CAS  Google Scholar 

  24. C. J. Schram, S. P. Beaudoin and L. S. Taylor, Langmuir, 31, 171 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. E. Bouchaud and M. Daoud, Journal de Physique, 48, 1991 (1987).

    Article  CAS  Google Scholar 

  26. P. Somasundaran and L. Huang, Adv. Colloid Interface Sci., 88, 179 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. P. Hamilton, D. Littlejohn, A. Nordon, J. Sefcik and P. Slavin, Analyst, 137, 118 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. U. Holzwarth and N. Gibson, Nat. Nanotechnol., 6, 534 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. W.-H. Chang, P.-Y. Liu, D.-E. Lin, Y.-T. Jiang, C.-J. Lu and Y.-H. H. Hsu, Macromol. Res., 30, 6 (2022).

    Article  CAS  Google Scholar 

  30. S. Mehmood, H. Yu, L. Wang, M. A. Uddin, B. U. Amin, F. Haq, S. Fahad and M. Haroon, Macromol. Res., 30, 623 (2022).

    Article  CAS  Google Scholar 

  31. H. J. Kim, K. H. Kim, Y. S. Han, Y.-J. Kim and H. M. Lee, Macromol. Res., 28, 1276 (2022).

    Article  Google Scholar 

  32. Y. H. Lee, S. Y. Park, Y. J. Hwang and J. K. Park, Macromol. Res., 30, 90 (2022).

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science and ICT (MSIT) (Engineering Research Center 2021R1A5A6002853) and Ministry of Science and ICT (MSIT) in Korean government and Korea Industrial Technology Association (KOITA) (KOITA-RND3-2-2022-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghwi Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kwon, OP. & Lee, J. Crystal engineering of quercetin via combined adsorption of polyvinylpyrrolidone and tannin. Korean J. Chem. Eng. 40, 1760–1766 (2023). https://doi.org/10.1007/s11814-023-1401-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1401-7

Keywords

Navigation