Skip to main content
Log in

Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

One of the major environmental issues today is waste pollution, particularly non-biodegradable wastes such as polystyrene waste. Furthermore, heavy metal contamination is a major environmental threat. Mercury is one of the most hazardous and poisonous contaminants, and its usage in various industrial processes has resulted in contaminated effluents being released into surface runoff and groundwater. Because of the beneficial physical properties of polystyrene foam, this non-biodegradable waste was used in this study as a suitable medium for chemical modification. The polystyrene foam was first modified using crosslinked chitosan, and then it was reacted with carbon disulfide to improve its performance for the removal of Hg2+. The prepared composite was used for the removal of mercury ions from contaminated water. The adsorbent’s physical, chemical, and morphological properties were determined using energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM), and Brauer-Emmett-Teller (BET) analyses. Specific surface area, porosity, and average pore diameter were determined to be 314.8 m2/g, 0.345 cm2/g, and 1.96 nm, respectively. Experiments were designed to investigate the effects of pH, contact time, and contaminant concentration by the Box-Behnken response surface methodology. The maximum removal percentage of 79.85% was achieved for the initial mercury concentration of 50 mg/L at pH 4. Moreover, the adsorption was observed to follow the Dubinin-Radushkevich isotherm. Studies on adsorbent recovery also showed that the adsorbent can be recovered and reused for at least three cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yadav, A. Yadav, N. Bagotia, A. K. Sharma and S. Kumar, J. Water Process Eng., 42, 102148 (2021).

    Article  Google Scholar 

  2. B. Sajjadi, R. M. Shrestha, W Y. Chen, D. L. Mattern, N. Hammer, V. Raman and A. Dorris, J. Water Process Eng., 39, 101677 (2021).

    Article  Google Scholar 

  3. H. F. Raad, A. Pardakhti and H. Kalarestaghi, Pollution, 7, 395 (2021).

    CAS  Google Scholar 

  4. N. J. Langford and R. E. Ferner, J. Hum. Hypertens., 13, 651 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. W.-T. Tsai, Sustainability, 14, 1557 (2022).

    Article  Google Scholar 

  6. F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu and M. B. Luo, J. Mater. Chem. A., 3, 9616 (2015).

    Article  CAS  Google Scholar 

  7. A. Prasetya, P. Prihutami, A. D. Warisaura, M. Fahrurrozi and H. T. B. Murti Petrus, J. Environ. Chem. Eng., 8, 103781 (2020).

    Article  CAS  Google Scholar 

  8. M. Urgun-Demirtas, P. L. Benda, P. S. Gillenwater, M. C. Negri, H. Xiong and S. W Snyder, J. Hazard. Mater., 215–216, 98 (2012).

    Article  PubMed  Google Scholar 

  9. S. M. Bachand, T. E. C. Kraus, D. Stern, Y. L. Liang, W. R. Horwath and P. A. M. Bachand, Ecol. Eng., 134, 26 (2019).

    Article  Google Scholar 

  10. M. Negarestani, H. Farimaniraad, A. Mollahosseini, A. Kheradmand and H. Shayesteh, Int. J. Phytoremediation, 1 (2022).

    Google Scholar 

  11. Y. Wang, H. Li, Z. He, M. Zhang, J. Guan, K. Qian, J. Xu and J. Hu, Environ. Sci. Pollut. Res. Int., 27, 30254 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. H. Prokkola, E. T. Nurmesniemi and U. Lassi, ChemEngineering, 4, 51 (2020).

    Article  CAS  Google Scholar 

  13. L. Duan, X. Hu, D. Sun, Y. Liu, Q. Guo, T. Zhang and B. Zhang, Korean J. Chem. Eng., 37, 1166 (2020).

    Article  CAS  Google Scholar 

  14. M. Negarestani, A. Mollahosseini, H. Farimaniraad, H. Ghiasinejad, H. Shayesteh and A. Kheradmand, Sep. Sci. Technol., 58, 435 (2022).

    Article  Google Scholar 

  15. A. Kheradmand, M. Negarestani, A. Mollahosseini, H. Shayesteh and H. Farimaniraad, Sci. Rep., 12, 16442 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P. Alipour Atmianlu, R. Badpa, V Aghabalaei and M. Baghdadi, J. Environ. Chem. Eng., 9, 106514 (2021).

    Article  CAS  Google Scholar 

  17. S. Armenise, W. SyieLuing, J. M. Ramírez-Velásquez, F. Launay, D. Wuebben, N. Ngadi, J. Rams and M. Muñoz, J. Anal. Appl. Pyrol., 158, 105265 (2021).

    Article  CAS  Google Scholar 

  18. L. Li, J. Wang, C. Jia, Y. Lv and Y. Liu, J. Water Process Eng., 39, 101753 (2021).

    Article  Google Scholar 

  19. J. Saleem, M. Adil Riaz and M. Gordon, J. Hazard. Mater., 341, 424 (2021).

    Article  Google Scholar 

  20. M. Janmohammadi, M. Baghdadi, T. M. Adyel and N. Mehrdadi, Sci. Total Environ., 752, 141850 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. I. Baker, Fifty Mater. That Make World., 1 (2018).

  22. J. Mao, W. Jiang, J. Gu, S. Zhou, Y. Lu and T. Xie, Appl. Surf. Sci., 317, 787 (2014).

    Article  CAS  Google Scholar 

  23. N. C. F. Machado, L. A. M. de Jesus, P. S. Pinto, F. G. F. de Paula, M. O. Alves, K. H. A. Mendes, R. V. Mambrini, D. Barrreda, V. Rocha, R. Santamaría, J. P. C. Trigueiro, R. L. Lavall and P. F. R. Ortega, J. Clean. Prod., 313, 127903 (2021).

    Article  CAS  Google Scholar 

  24. Y. Pu, Z. Xie, H. Ye and W Shi, Water Sci. Technol., 83, 2192 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. A. L. Andrady and M. A. Neal, Philos. Trans. R. Soc. B Biol. Sci., 364, 1977 (2009).

    Article  CAS  Google Scholar 

  26. C. Yu, W Lin, J. Jiang, Z. Jing, P. Hong and Y. Li, RSC Adv., 9, 37759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. G. Liu, S. Wen, Y. Wang, J. Zhang, S. Huang and A. Chen, Chem. Eng. Sci., 249, 117331 (2022).

    Article  CAS  Google Scholar 

  28. H. K. No and S. P. Meyers, Rev. Environ. Contam. Toxicol., 163, 1 (2000).

    CAS  PubMed  Google Scholar 

  29. S. Olivera, H. B. Muralidhara, K. Venkatesh, V. K. Guna, K. Gopalakrishna and Y. Kumar K., Carbohydr. Polym., 153, 600 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. M. V Tsurkan, A. Voronkina, Y. Khrunyk, M. Wysokowski, I. Petrenko and H. Ehrlich, Carbohydr. Polym., 252, 117204 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. R. Vajdi, N. Alvand, M. Baghdadi and G. N. Bidhendi, J. Water Process Eng., 40, 101898 (2021).

    Article  Google Scholar 

  32. N. Ahmad, S. Sultana, M. Z. Khan and S. Sabir, Chitosan based nanocomposites as efficient adsorbents for water treatment BT — modern age waste water problems?: Solutions using applied nanotechnology, in: M. Oves, M. O. Ansari, M. Zain Khan, M. Shahadat, I. M. I. Ismail (Eds.), Springer International Publishing, Cham, 69 (2020).

  33. H. Zeng, Y. Yu, F. Wang, J. Zhang and D. Li, Colloids Surf. A Physicochem. Eng. Asp., 585, 124036 (2020).

    Article  CAS  Google Scholar 

  34. P. S. Bakshi, D. Selvakumar, K. Kadirvelu and N. S. Kumar, Int. J. Biol. Macromol., 150, 1072 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. F. S. Al-Mubaddel, S. Haider, M. O. Aijaz, A. Haider, T. Kamal, W. A. Almasry, M. Javid and S. U.-D. Khan, Polym. Bull., 74, 1535 (2017).

    Article  CAS  Google Scholar 

  36. M. Keshvardoostchokami, M. Majidi, A. Zamani and B. Liu, Carbohydr. Polym., 273, 118625 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. A. Chen, C. Shang, J. Shao, Y. Lin, S. Luo, J. Zhang, H. Huang, M. Lei and Q. Zeng, Carbohydr. Polym., 155, 19 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. J. Yang, Y. Han, Z. Sun, X. Zhao, F. Chen, T. Wu and Y. Jiang, ACS Omega, 6, 15885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T. C. Zhang and J. Liu, Chem. Eng. J., 359, 265 (2019).

    Article  CAS  Google Scholar 

  40. A. C. Alavarse, E. C. G. Frachini, R. L. C. G. da Silva, V. H. Lima, A. Shavandi and D. F. S. Petri, Int. J. Biol. Macromol., 202, 558 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. F. Doustdar, A. Olad and M. Ghorbani, Int. J. Biol. Macromol., 208, 912 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. B. Gulen and P. Demircivi, J. Mol. Struct., 1206, 127659 (2020).

    Article  CAS  Google Scholar 

  43. C.-H. Kuo, Y.-C. Liu, C.-M. J. Chang, J.-H. Chen, C. Chang and C.-J. Shieh, Carbohydr. Polym., 87, 2538 (2012).

    Article  CAS  Google Scholar 

  44. J. Liu, W. Liu, Y. Wang, M. Xu and B. Wang, Appl. Surf. Sci., 367, 327 (2016).

    Article  CAS  Google Scholar 

  45. S. Kamari, F. Ghorbani and A. M. Sanati, Sust. Chem. Pharm., 13, 100153 (2019).

    Google Scholar 

  46. B. Wang, J. Xia, L. Mei, L. Wang and Q. Zhang, ACS Sust. Chem. Eng., 6, 1343 (2018).

    Article  CAS  Google Scholar 

  47. M. Baghdadi, J. Environ. Chem. Eng., 5, 1906 (2017).

    Article  CAS  Google Scholar 

  48. A. Rezk, G. Gediz Ilis and H. Demir, Therm. Sci. Eng. Prog., 34, 101429 (2022).

    Article  CAS  Google Scholar 

  49. M. D. Mullassery, N. B. Fernandez and T. S. Anirudhan, Sep. Sci. Technol., 49, 1259 (2014).

    Article  CAS  Google Scholar 

  50. K. Johari, N. Saman, S. T. Song, J. Y. Y. Heng and H. Mat, Chem. Eng. Commun., 201, 1198 (2014).

    Article  CAS  Google Scholar 

  51. H. Cui, Y. Qian, Q. Li, Q. Zhang and J. Zhai, Chem. Eng. J., 211–212, 216 (2012).

    Article  Google Scholar 

  52. W. Du, L. Yin, Y. Zhuo, Q. Xu, L. Zhang and C. Chen, Ind. Eng. Chem. Res., 53, 582 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Baghdadi.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic supplementary material

11814_2023_1387_MOESM1_ESM.pdf

Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porkar, B., Atmianlu, P.A., Mahdavi, M. et al. Chemical modification of polystyrene foam using functionalized chitosan with dithiocarbamate as an adsorbent for mercury removal from aqueous solutions. Korean J. Chem. Eng. 40, 892–902 (2023). https://doi.org/10.1007/s11814-023-1387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1387-1

Keywords

Navigation