Skip to main content
Log in

Polystyrene degraded and functionalized with acrylamide for removal of Pb(II) metal ions

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study describes the synthesis of a new material prepared by low-temperature thermocatalytic degradation of polystyrene (PS) by using zeolite clinoptilonite as a degradation template and subsequent functionalization with acrylamide (AAm) for the removal of lead (Pb(II)) metal ions from aqueous solutions. Infrared spectroscopy (FTIR), field emission scanning electron microscopy, thermogravimetric analysis and differential scanning calorimeter techniques confirm the successful functionalization of PS oligomers, before applying this material as an alternative adsorbent. A preliminar absorption study using functionalized PS oligomers as an adsorbent indicates that material has a good potential to absorb heavy metal of Pb(II) from the aqueous solutions. Equilibrium data show a maximum adsorption capacity of 33.85 mg g−1 with a percentage removal of 90.94%, which fitted well with Freundlich model and kinetic data were best described by pseudo-second-order model. Desorption studies revealed that PS oligomers functionalized with acrylamide as monomer source can be recovered using 0.5 M EDTA as regenerating agent, with a maximum recovery of Pb(II) metal ions of 97.28%. These results reveal that PS oligomers functionalized with acrylamide could be recommended as a promising adsorbent for Pb(II) metal ions contained in aqueous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Karaoğlu MH, Kula M, Uğurlu M (2013) Adsorption kinetic and equilibrium studies on removal of lead (II) onto glutamic acid/sepiolite. Clean Soil Air Water 41:548–556. https://doi.org/10.1002/clen.201000360

    Article  CAS  Google Scholar 

  2. Özgül G, Ferdi G (2007) Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J 132:289–297. https://doi.org/10.1016/j.cej.2007.01.010

    Article  CAS  Google Scholar 

  3. Dai Lam T, Van Chat N, Bach VQ, Loi VD, Van Anh N (2014) Simultaneous degradation of 2, 4, 6-trinitrophenyl-N-methylnitramine (Tetryl) and hexahydro-1, 3, 5-trinitro-1, 3, 5 triazine (RDX) in polluted wastewater using some advanced oxidation processes. J Ind Eng Chem 20:1468–1475. https://doi.org/10.1016/j.jiec.2013.07.033

    Article  CAS  Google Scholar 

  4. Karimnezhad H, Salehi E, Rajabi L, Azimi S, Derakhshan AA, Ansari M (2014) Dynamic removal of n-hexane from water using nanocomposite membranes: serial coating of para-aminobenzoate alumoxane, boehmite-epoxide and chitosan on Kevlar fabrics. J Ind Eng Chem 20:4491–4498. https://doi.org/10.1016/j.jiec.2014.02.021

    Article  CAS  Google Scholar 

  5. Alexander JT, Hai FI, Al-aboud TM (2012) Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. J Environ Manag 111:195–207. https://doi.org/10.1016/j.jenvman.2012.07.023

    Article  CAS  Google Scholar 

  6. Auta M, Hameed BH (2013) Acid modified local clay beads as effective low-cost adsorbent for dynamic adsorption of methylene blue. J Ind Eng Chem 19:1153–1161. https://doi.org/10.1016/j.jiec.2012.12.012

    Article  CAS  Google Scholar 

  7. Khosravi M, Azizian S (2014) Adsorption of anionic dyes from aqueous solution by iron oxide nanospheres. J Ind Eng Chem 20:2561–2567. https://doi.org/10.1016/j.jiec.2013.10.040

    Article  CAS  Google Scholar 

  8. Momčilović M, Purenović M, Bojić A, Zarubica A, Randelovid M (2011) Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276:53–59. https://doi.org/10.1016/j.desal.2011.03.013

    Article  CAS  Google Scholar 

  9. Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395. https://doi.org/10.1016/j.jhazmat.2006.10.046

    Article  CAS  PubMed  Google Scholar 

  10. Faghihian NY (2009) A comparative study of the sorption of Cd(II) and Pb(II) ions from aqueous solution by local bentonite and clinoptilolite. Adsorpt Sci Technol 27:107–115. https://doi.org/10.1260/026361709788921588

    Article  CAS  Google Scholar 

  11. Wang S, Ariyanto E (2007) Competitive adsorption of malachite green and Pb ions on natural zeolite. J Colloid Interface Sci 314:25–31. https://doi.org/10.1016/j.jcis.2007.05.032

    Article  CAS  PubMed  Google Scholar 

  12. Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328. https://doi.org/10.1016/j.jcis.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  13. Vieira DM, Da Costa ACA, Henriques CA, Cardoso VL, Pessoa de Franca F (2007) Biosorption of lead by the brown seaweed Sargassum filipendula-batch and continuous pilot studies. Electron J Biotechnol 10:368–375. https://doi.org/10.4067/S0717-34582007000300004

    Article  CAS  Google Scholar 

  14. Kim SH, Song H, Nisola GM, Ahn J, Galera MM, Hee Lee C, Chung WJ (2006) Adsorption of lead(II) ions using surface-modified chitins. J Ind Eng Chem 12:469–475

    CAS  Google Scholar 

  15. Mishra PC, Islam M, Patel RK (2013) Removal of lead (II) by chitosan from aqueous medium. Sep Sci Technol 48:1234–1242. https://doi.org/10.1080/01496395.2012.727059

    Article  CAS  Google Scholar 

  16. Liu C, Bai R, San Ly Q (2008) Selective removal of copper and lead ions by diethylenetriamine functionalized adsorbent: behaviors and mechanisms. Water Res 42:1511–1522. https://doi.org/10.1016/j.watres.2007.10.031

    Article  CAS  PubMed  Google Scholar 

  17. Pietrelli L, Palombo M, Taresco V, Crisante F, Francolini I, Piozzi A (2017) Copper (II) adsorption capacity of a novel hydroxytyrosol-based polyacrylate. Polym Bull 74:1175–1191. https://doi.org/10.1007/s00289-016-1770-8

    Article  CAS  Google Scholar 

  18. Al-Homoud MS (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 40:353–366. https://doi.org/10.1016/j.buildenv.2004.05.013

    Article  Google Scholar 

  19. Memon JR, Memon S, Bhanger MI, Khuhawar MY, Allen GC, Memon GZ, Pathan AG (2008) Efficiency of Cd(II) removal from aqueous media using chemically modified polystyrene foam. Eur Polym J 44:1501–1511. https://doi.org/10.1016/j.eurpolymj.2008.02.018

    Article  CAS  Google Scholar 

  20. Xiong C, Zhou S, Liu X, Jia Q et al (2014) 2-Aminothiazole functionalized polystyrene for selective removal of Au(III) in aqueous solutions. Ind Eng Chem Res 53:2441–2448. https://doi.org/10.1021/ie403502r

    Article  CAS  Google Scholar 

  21. Bekri-Abbes I, Bayoudh S, Baklouti M (2006) Converting waste polystyrene into adsorbent: potential use in the removal of lead and cadmium ions from aqueous solution. J Polym Environ 14:249–256. https://doi.org/10.1007/s10924-006-0018-3

    Article  CAS  Google Scholar 

  22. Bulbul Sonmez H, Senkal BF, Sherrington DC, Bıcak N (2003) Atom transfer radical graft polymerization of acrylamide from N-chlorosulfonamidated polystyrene resin, and use of the resin in selective mercury removal. React Funct Polym 55:1–8. https://doi.org/10.1016/S1381-5148(02)00193-1

    Article  Google Scholar 

  23. Reddy R, Reddy KH (2003) Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins. Indian Acad Sci 115:155–160. https://doi.org/10.1007/BF02704254

    Article  CAS  Google Scholar 

  24. Saadeh HA, Shairah EAA, Charef N, Mubarak MS (2012) Synthesis and adsorption properties, towards some heavy metal ions, of a new polystyrene-based terpyridine polymer. J Appl Polym Sci 124:2717–2724. https://doi.org/10.1002/app.34977

    Article  CAS  Google Scholar 

  25. Giles CH, Smith D, Huitson A (1974) A general treatment and classification of the solute isotherm. I. Theoretical. J Colloid Interface Sci 47:755–765. https://doi.org/10.1016/0021-9797(74)90252-5

    Article  CAS  Google Scholar 

  26. Yang X, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci 287:25–34. https://doi.org/10.1016/j.jcis.2005.01.093

    Article  CAS  PubMed  Google Scholar 

  27. Lagregren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  28. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Chem Eng 89:31–59

    Google Scholar 

  29. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02254a006

    Article  CAS  Google Scholar 

  30. Appel J (1973) Freundlich’s adsorption isotherm. Surf Sci 39:237–244. https://doi.org/10.1016/0039-6028(73)90105-2

    Article  CAS  Google Scholar 

  31. Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC (2015) Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chem Eng J 260:291–299. https://doi.org/10.1016/j.cej.2014.09.017

    Article  CAS  Google Scholar 

  32. Sebestyén Z, Barta-Rajnaia E, Bozia J, Blazsó M, Jakab E, Miskolczi N, Czégény Z (2017) Catalytic pyrolysis of biomass and plastic mixtures using HZSM-5 zeolite. Energy Proc 105:718–723. https://doi.org/10.1016/j.egypro.2017.03.381

    Article  CAS  Google Scholar 

  33. Xiong C, Yao C (2009) Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions. Chem Eng J 155:844–850. https://doi.org/10.1016/j.cej.2009.09.009

    Article  CAS  Google Scholar 

  34. Zu J, Shi F, Liu R, Ye M (2013) Amination of glycidyl methacrylate-grafted polystyrene particles and their adsorption capacity for Nd3+ and Cd2+. Iran Polym J 22:259–265. https://doi.org/10.1007/s13726-013-0123-9

    Article  CAS  Google Scholar 

  35. Öztürk T, Kayğın O, Göktaş M, Hazer B (2016) Synthesis and characterization of graft copolymers based on polyepichlorohydrin via reversible addition-fragmentation chain transfer polymerization. J Macromol Sci A 53:362–367. https://doi.org/10.1080/10601325.2016.1166002

    Article  CAS  Google Scholar 

  36. Bahramzadeh A, Zahedi P, Abdouss M (2016) Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. J Appl Polym Sci 133:42944. https://doi.org/10.1002/app.42944

    Article  CAS  Google Scholar 

  37. Shen S, Pu Z, Zheng P, Liu X, Jia K (2016) Synthesis and properties of cross-linkable poly(arylene ether nitrile)s containing side propenyl groups. High Perform Polym 28:562–569. https://doi.org/10.1177/0954008315591188

    Article  CAS  Google Scholar 

  38. Vetriselvi V, Santhi J (2015) Redox polymer as an adsorbent for the removal of chromium (VI) and lead (II) from the tannery effluents. Water Resour Ind 10:39–52. https://doi.org/10.1016/j.wri.2015.02.003

    Article  Google Scholar 

  39. Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution B agricultural waste biomass. J Hazard Mater 140:60–68. https://doi.org/10.1016/j.jhazmat.2006.06.056

    Article  CAS  PubMed  Google Scholar 

  40. Yigitoglu M, Arslan M, Sacak O, Unal HI (2002) Adsorption behavior of copper (II) ion from aqueous solution on 4-vinyl pyridine/2-hydroxyethylmethaacrylate mixture grafted poly(ethylene terephathalate) fibers. J Biol Chem 31:133–143. https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6%3c766:AID-APP5%3e3.0.CO;2-B

    Article  Google Scholar 

  41. Hammed BH (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater 161:753–759. https://doi.org/10.1016/j.jhazmat.2008.04.019

    Article  CAS  Google Scholar 

  42. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473. https://doi.org/10.1016/j.jcis.2009.11.060

    Article  CAS  PubMed  Google Scholar 

  43. Shokoohi R, Saghi MH, Ghafari HR, Hadi M (2009) Biosorption of iron from aqueous solution by dried biomass of activated sludge. Iran J Environ Health Sci Eng 6(2):107–114

    CAS  Google Scholar 

Download references

Acknowledgements

Authors thank to PAICYT-UANL (CE327-15) for financial support J.P.R. Thanks for the scholarship from CONACYT. Funding was provided by Universidad Autónoma de Nuevo León.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Sánchez-Anguiano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyna, J.P., García-López, M.C., Pérez-Rodríguez, N.A. et al. Polystyrene degraded and functionalized with acrylamide for removal of Pb(II) metal ions. Polym. Bull. 76, 2559–2578 (2019). https://doi.org/10.1007/s00289-018-2479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2479-7

Keywords

Navigation