Skip to main content

Advertisement

Log in

Dopant-induced red emission, paramagnetism, and hydrogen evolution of diluted magnetic semiconductor ZnS: Eu nanoparticles

  • Rapid Communication
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Cubic-structured europium (Eu) doped zinc sulfide (ZnS) nanoparticles (NPs) were prepared via refluxing at 150 °C. Absolute structural studies showed that Eu+ ions were successfully substituted into the ZnS host lattice and changed the original structure of the host. As-fabricated ZnS:Eu NPs exhibited typical red emission due to the transition of the Eu dopant in the 5d0-7f1, 5d0-7f2, 5d0-7f3, and 5d0-7f4 energy levels of the 4f orbital of the dopant. The typical diamagnetic ZnS could be converted to tunable paramagnetic as a function of Eu-doping content. These NPs were quantified for hydrogen evolution through water splitting by artificial solar spectrum. Eu doping can drastically enhance the hydrogen (H2) evolution capability of ZnS, which is higher than that of bare ZnS NPs. The causes behind these engrossing results will be revealed. These interesting properties may find applications in optoelectronics, spintronics, and H2 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Y. Jiang, K. R. Zhu, Z. Q. Lin, S. W. Jin and G. Li, Rare Met., 37, 881 (2018).

    Article  CAS  Google Scholar 

  2. H. Q. Huang, J. L. Liu, B. F. Han, C. C. Mi and S. K. Xu, J. Lumin., 132, 1003 (2012).

    Article  CAS  Google Scholar 

  3. B. Poornaprakash, S. Ramu, K. Subramanyam, Y. L. Kim, M. Kumar and S. P. R. Mallem, Ceram. Int., 47, 18557 (2021).

    Article  CAS  Google Scholar 

  4. B. Poornaprakash, U. Chalapathi, M. Kumar, S. Ramu, S. V. P. Vattikuti and S.-H. Park, Mater. Lett., 273, 127887 (2020).

    Article  CAS  Google Scholar 

  5. P. Puneetha, S. P. R. Mallem, B. Poornaprakash, J.-H. Lee and J. Shim, Nano Energy, 84, 105923 (2021).

    Article  CAS  Google Scholar 

  6. C. Zhang, S. Liu, X. Liu, F. Deng, Y. Xiong and F. C. Tsai, R. Soc. Open Sci., 5, 171712 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. G. T. Chavan, A. Sikora, N. B. Chaure, L. P. Deshmukh and C.-W. Jeon, Mater. Lett., 320, 132353 (2022).

    Article  CAS  Google Scholar 

  8. G. T. Chavan, A. Yadav, B. Y. Fugare, N. M. Shinde, M. S. Tamboli, S. S. Kamble, A. Sikora, J. Warycha, B. J. Lokhande, S.-W. Kang, A. Kim and C.-W. Jeon, J. Alloys Compd., 901, 162822 (2022).

    Article  CAS  Google Scholar 

  9. G. T. Chavan, A. Sikora, R. C. Pawar, J. Warycha, P. J. Morankar and C.-W. Jeon, Ceram. Int., 49, 282 (2022).

    Article  Google Scholar 

  10. G. T. Chavan, N. M. Shinde, F. A. Sabah, S. S. Patil, A. Sikora, V. M. Prakshale, S. S. Kamble, N. B. Chaure, L. P. Deshmukh, A. Kim and C.-W. Jeon, Appl. Surf. Sci., 574, 151581 (2022).

    Article  CAS  Google Scholar 

  11. A. A. Ansari, A. K. Parchur, B. Kumar and S. B. Rai, J. Mater. Sci. Mater. Med., 27, 178 (2016).

    Article  PubMed  Google Scholar 

  12. J. Y. Park, E. J. Jeon, Y. H. Choa and B. S. Kim, J. Lumin., 208, 145 (2019).

    Article  CAS  Google Scholar 

  13. M. M. Ferrer, Y. V. B. Santana, C. W. Raubach, F. L. A. Porta, A. F. Gouveia, E. Longo and J. R. Sambrano, J. Mol. Model., 20, 2375 (2014).

    Article  PubMed  Google Scholar 

  14. G. S. Lotey, Z. Jindal, V. Singhi and N. K. Verma, Mater. Sci. Semicond. Process., 16, 2044 (2013).

    Article  Google Scholar 

  15. I. Ahemen, K. Dilip and O. C. Melludu, Adv. Sci. Eng. Med., 5, 1188 (2013).

    Article  CAS  Google Scholar 

  16. S. Horoz, B. Yakami, U. Poudyal, J. M. Pikal, W. Wang and J. Tang, AIP Adv., 6, 045119 (2016).

    Article  Google Scholar 

  17. I. V. Beketov, A. P. Safronov, A. I. Medvedev, J. Alonso, G. V. Kurlyandskaya and S. M. Bhagat, AIP Adv., 2, 022154 (2012).

    Article  Google Scholar 

  18. S. C. Qu, W. H. Zhou, F. Q. Liu, N. F. Chen and Z. G. Wang, Appl. Phys. Lett., 80, 3605 (2002).

    Article  CAS  Google Scholar 

  19. D. A. Reddy, G. Murali, R. P. Vijayalakshmi and B. K. Reddy, Appl. Phys. A, 105, 119 (2011).

    Article  CAS  Google Scholar 

  20. K. Ashwini, C. Pandurangappa and B. M. Nagabhushana, Phys. Scr., 85, 065706 (2012).

    Article  Google Scholar 

  21. Y. Wang, X. Liang, E. Liu, X. Hu and J. Fan, Nanotechnology, 26, 375601 (2015).

    Article  PubMed  Google Scholar 

  22. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev and S. B. Mirov, J. Opt., 12, 024005 (2010).

    Article  Google Scholar 

  23. H. Nelkowski and G. Grebe, J. Lumin., 1–2, 88 (1970).

    Article  Google Scholar 

  24. M. Pal, N. R. Mathews, E. R. Morales, J. M. G. Jiménez and X. Mathew, Opt. Mater., 35, 2664 (2013).

    Article  CAS  Google Scholar 

  25. B. Poornaprakash, S. V. P. Vattikuti, K. Subramanyam, R. Cheruku, K. C. Devarayapalli, Y. L. Kim, V. R. M. Reddy, H. Park and M. S. P. Reddy, Ceram. Int., 47, 28976 (2021).

    Article  CAS  Google Scholar 

  26. B. Poornaprakash, D. A. Reddy, G. Murali, N. M. Rao, R. P. Vijayalakshmi and B. K. Reddy, J. Alloys Compd., 577, 79 (2013).

    Article  CAS  Google Scholar 

  27. T. Naohito, K. Hideaki and K. Giyuu, J. Appl. Phys., 93, 6957 (2003).

    Article  Google Scholar 

  28. B. Poornaprakash, P. T. Poojitha, U. Chalapathi and S. H. Park, Mater. Lett., 181, 227 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program (S3038568) funded by the Ministry of SMEs and Startups (MSS, Korea). This work also supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Fusion Research (NRF-20201G1A1014959, NRF-2022R1I1A1 A01064248, 2021R1A4A2001658, and 2022R1A2C1003853). This work also supported by the National Research Foundation Korea funded by the Ministry of Science, ICT and Fusion Research (Grant No: 20201G1A1014959). Partially supported by NRF-2018R1A6 A1A03025761 and NRF-2018R1D1A1B07050766.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Lae Kim, Sung Jin An or Kwi-Il Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallem, S.P.R., Puneetha, P., Subramanyam, K. et al. Dopant-induced red emission, paramagnetism, and hydrogen evolution of diluted magnetic semiconductor ZnS: Eu nanoparticles. Korean J. Chem. Eng. 40, 722–726 (2023). https://doi.org/10.1007/s11814-022-1374-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1374-y

Keywords

Navigation