Skip to main content
Log in

Impedimetric sensing platform based on copper oxide with activated carbon for sensitive detection of amoxicillin

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Copper oxide with activated carbon-based materials was synthesized for the selective detection of amoxicillin (AMX) in aqueous samples. The morphological and structural characteristics of the materials were evaluated using a scanning electron microscope and X-ray diffraction. Electrochemical impedance spectroscopy and voltammetric techniques were also used to observe the electrochemical response of the system. The best AMX sensing behavior was obtained with the presence of copper oxide that interacts with AMX and the increased surface area of activated carbon, which results in a sharp oxidation current. The electrode showed two linear responses in the AMX concentration ranges from 10 µM to 100 µM and from 1 mM to 5 mM, respectively. In the linear ranges, the sensitivity of the sensing materials was calculated to be 9.5528 Ω µM−1 and 0.14994 Ω µM−1, respectively. The statistical test confirms that the electrode showed good repeatability and selectivity in the determination of AMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Swann, Br. J. Hist. Sci., 16, 154 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. A. Hrioua, A. Loudiki, A. Farahi, M. Bakasse, S. Lahrich, S. Saqrane and M. A. El Mhammedi, Bioelectrochemistry, 137, 107687 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. R. Sutherland, Microbiology, 34, 85 (1964).

    CAS  Google Scholar 

  4. M. G. El-sayed, A. A. El-komy, A. E. Elbarawy and G. E. Mustafa, J. Phys. Pharm. Adv., 4, 515 (2014).

    Article  Google Scholar 

  5. S. Mathur, A. Fuchs, J. Bielicki, J. Van Den Anker and M. Sharland, Paediatr. Int. Child Health, 38, S66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. J. Fernández, I. A. C. Ribeiro, V. Martin, O. L. Martija, E. Zuza, A. F. Bettencourt and J.-R. Sarasua, Mater. Sci. Eng.: C, 93, 529 (2018).

    Article  Google Scholar 

  7. K. Kümmerer, Chemosphere, 75, 417 (2009).

    Article  PubMed  Google Scholar 

  8. H. Mansouri, R. J. Carmona, A. Gomis-Berenguer, S. Souissi-Najar, A. Ouederni and C. O. Ania, J. Colloid Interface Sci., 449, 252 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. G. Yang and F. Zhao, Eectrochim. Acta, 174, 33 (2015).

    Article  CAS  Google Scholar 

  10. F. A. O. Joint and W. H. Organization, W. H. O. E. C. on Food Additives, and others, Toxicological evaluation of certain veterinary drug residues in food: prepared by the seventy-fifth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), World Health Organization (2012).

  11. R. A. Figueroa and A. A. MacKay, Environ. Sci. Technol., 39, 6664 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. N. Erdinç, S. Göktürk and M. Tunçay, Colloids Surf. B: Biointerfaces, 75, 194 (2010).

    Article  PubMed  Google Scholar 

  13. H. Wang, N. Wang, B. Wang, Q. Zhao, H. Fang, C. Fu, C. Tang, F. Jiang, Y. Zhou, Y. Chen and Q. Jiang, Environ. Sci. Technol., 50, 2692 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. G. O. Androga, D. R. Knight, S.-C. Lim, N. F. Foster and T. V. Riley, Anaerobe, 54, 55 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. A. Wong, A. M. Santos, F. H. Cincotto, F. C. Moraes, O. Fatibello-Filho and M. D. P. T. Sotomayor, Talanta, 206, 120252 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. K. M. Matar, Chromatographia, 64, 255 (2006).

    Article  CAS  Google Scholar 

  17. L. Sun, L. Jia, X. Xie, K. Xie, J. Wang, J. Liu, L. Cui, G. Zhang, G. Dai and J. Wang, Food Chem., 192, 313 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. G. Pajchel, K. Pawlowski and S. Tyski, J. Pharm. Biomed. Anal., 29, 75 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. A. Garcia-Reiriz, P. C. Damiani and A. C. Olivieri, Talanta, 71, 806 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. R.H. Barbhaiya, P. Turner and E. Shaw, Clin. Chim. Acta, 77, 373 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. F. A. Aly, N. A. Alarfaj and A. A. Alwarthan, Anal. Chim. Acta, 414, 15 (2000).

    Article  CAS  Google Scholar 

  22. A. P. Ball, P. G. Davey, A. M. Geddes, I. D. Farrell and G. R. Brookes, The Lancet, 315, 620 (1980).

    Article  Google Scholar 

  23. D. Krasucka, C. Kowalski, M. Osypiuk and G. Opielak, Acta Chromatographica, 27, 55 (2015).

    Article  CAS  Google Scholar 

  24. M. Akhond, G. Absalan and H. Ershadifar, Spectrochim. Acta Part A: Mol. Biomolec. Spectr., 143, 223 (2015).

    Article  CAS  Google Scholar 

  25. D. C. Napoleão, R. B. Pinheiro, L. E. M. C. Zaidan, J. M. Rodriguez-Diaz, A. da N. Araújo, M. da C. Montenegro and V. L. da Silva, Desalination Water Treatment, 57, 10988 (2016).

    Article  Google Scholar 

  26. B. Uslu and I. Biryol, J. Pharm. Biomed. Anal., 20, 591 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. A. K. Jain, V. K. Gupta, L. P. Singh and J. R. Raisoni, Electrochim. Acta, 51, 2547 (2006).

    Article  CAS  Google Scholar 

  28. P. Norouzi, V. K. Gupta, B. Larijani, M. R. Ganjali and F. Faridbod, Talanta, 127, 94 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. S. Cheemalapati, B. Devadas and S.-M. Chen, J, Colloid Interface Sci., 418, 132 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. V. K. Gupta, N. Mergu, L. K. Kumawat and A. K. Singh, Talanta, 144, 80 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. A. Muhammad, N. A. Yusof, R. Hajian and J. Abdullah, Sensors, 16, 56 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Z. Guo, D.-D. Li, X.-K. Luo, Y.-H. Li, Q.-N. Zhao, M.-M. Li, Y.-T. Zhao, T.-S. Sun and C. Ma, J. Colloid Interface Sci., 490, 11 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Z. Shamsadin-Azad, M. A. Taher, S. Cheraghi and H. Karimi-Maleh, J. Food Meas. Charact., 13, 1781 (2019).

    Article  Google Scholar 

  34. H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N. W. Maxakato and A. Abbaspourrad, New J. Chem., 43, 2362 (2019).

    Article  CAS  Google Scholar 

  35. H. Karimi-Maleh and O. A. Arotiba, J. Colloid Interface Sci., 560, 208 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. D. P. dos Santos, M. F. Bergamini and M. V. B. Zanoni, Int. J. Electrochem. Sci., 5, 1399 (2010).

    Google Scholar 

  37. A. Hrioua, A. Farahi, S. Lahrich, M. Bakasse, S. Saqrane and M. A. El Mhammedi, ChemistrySelect, 4, 8350 (2019).

    Article  CAS  Google Scholar 

  38. S. J. Lyle and S. S. Yassin, Anal. Chim. Acta, 274, 225 (1993).

    Article  CAS  Google Scholar 

  39. M.-H. Chiu, J.-L. Chang and J.-M. Zen, Electroanalysis: An international j. devoted to fundamental and practical aspects of electroanalysis, Wiley-VCH, New York (2009).

    Google Scholar 

  40. M. T. Feroze, S. K. Sami, D. Doonyapisut, B. Kim and C.-H. Chung, ChemElectroChem, 7, 730 (2020).

    Article  CAS  Google Scholar 

  41. K. Zhuo, C. Y. An, P. K. Kannan, N. Seo, Y.-S. Park and C.-H. Chung, Korean J. Chem. Eng., 34, 1483 (2017).

    Article  CAS  Google Scholar 

  42. Y.-S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo and C.-H. Chung, Appl. Surf. Sci., 389, 865 (2016).

    Article  CAS  Google Scholar 

  43. T. M. Prado, F. H. Cincotto, F. C. Moraes and S. A. S. Machado, Electroanalysis, 29, 1278 (2017).

    Article  CAS  Google Scholar 

  44. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, J. Chem. Educ., 95, 197 (2018).

    Article  CAS  Google Scholar 

  45. A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and applications, 2nd Edition, Wiley-VCH, New York (2001).

    Google Scholar 

  46. E. Chrzescijanska, E. Wudarska, E. Kusmierek and J. Rynkowski, J. Electroanal. Chem., 713, 17 (2014).

    Article  CAS  Google Scholar 

  47. G. Bhattacharya, A. Mathur, S. Pal, J. McLaughlin and S. S. Roy, Int. J. Electrochem. Sci., 11, 6370 (2016).

    Article  CAS  Google Scholar 

  48. C. Tlili, K. Reybier, A. Géloën, L. Ponsonnet, C. Martelet, H. Ben Ouada, M. Lagarde and N. Jaffrezic-Renault, Anal. Chem., 75, 3340 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. M. F. Bergamini, M. F. S. Teixeira, E. R. Dockal, N. Bocchi and E. T. G. Cavalheiro, J. Electrochem. Soc., 153, E94 (2006).

    Article  CAS  Google Scholar 

  50. R. Ojani, J.-B. Raoof and S. Zamani, Bioelectrochemistry, 85, 44 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. B. Norouzi and T. Mirkazemi, Russian J. Electrochem., 52, 37 (2016).

    Article  CAS  Google Scholar 

  52. D. P. Santos, M. F. Bergamini and M. V. B. Zanoni, Sens. Actuators B: Chem., 133, 398 (2008).

    Article  CAS  Google Scholar 

  53. H. Karimi-Maleh, F. Tahernejad-Javazmi, V. K. Gupta, H. Ahmar and M. H. Asadi, J. Mol. Liq., 196, 258 (2014).

    Article  CAS  Google Scholar 

  54. L’. Švorc, J. Sochr, M. Rievaj, P. Tomčík and D. Bustin, Bioelectrochemistry, 88, 36 (2012).

    Article  PubMed  Google Scholar 

  55. B. Rezaei and S. Damiri, Electroanalysis, 21, 1577 (2009).

    Article  CAS  Google Scholar 

  56. P. B. Deroco, R. C. Rocha-Filho and O. Fatibello-Filho, Talanta, 179, 115 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. C. Chen, X. Lv, W. Lei, Y. Wu, S. Feng, Y. Ding, J. Lv, Q. Hao and S.-M. Chen, Anal. Chim. Acta, 1073, 22 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [Grant number NRF-2021R1A4A1024129].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan-Hwa Chung.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feroze, M.T., Doonyapisut, D., Kim, B. et al. Impedimetric sensing platform based on copper oxide with activated carbon for sensitive detection of amoxicillin. Korean J. Chem. Eng. 40, 1014–1022 (2023). https://doi.org/10.1007/s11814-022-1366-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1366-y

Keywords

Navigation