Skip to main content
Log in

Novel silicatein-like protein for biosilica production from Amphimedon queenslandica and its use in osteogenic composite fabrication

  • Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Efforts to find sustainable and eco-friendly ways to conduct chemical reactions have led to the mimicking of nature. In this study, a new silica polymerization protein that can produce silica in an environmentally friendly manner was developed using cathepsin L-like protein (AqCtL) from Amphimedon queenslandica with a 61% sequence identity to that of silicatein-alpha, which is a natural biosilicifying enzyme. To stabilize the protein structure, heterologously expressed AqCtL in Escherichia coli was mutated into AqCtLSN by changing the amino acid residues responsible for protease cleavage. The insoluble form of AqCtLSN was reconstituted into a soluble protein through the refolding process, displaying silica-condensing activity from silicic acid. AqCtLSN self-assembled, aggregated, and attached to a support in the PBS buffer without losing silica deposition activity. These properties were applied to fabricate a silica-hybrid material using a gelatin-tyramine-alginate cross-linked hydrogel as a scaffold. FT-IR analysis revealed that a silica hybrid material was produced owing to the in situ silicification by AqCtLSN immobilized on the hydrogel. The surface of biosilica mediated by AqCtLSN demonstrated an increase in cell proliferation, alkaline phosphatase activity, and calcium mineral precipitation in the osteogenesis of MC3T3 E1 cells compared to those without biosilica. In conclusion, AqCtLSN, recombinantly expressed in E. coli, is a novel biosilica-forming protein that can be used to produce composites for biomedical applications, especially bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Estroff, Chem. Rev., 108, 4329 (2008).

    Article  CAS  Google Scholar 

  2. K. Shimizu, J. Cha, G. D. Stucky and D. E. Morse, Proc. Natl. Acad. Sci. USA, 95, 6234 (1998).

    Article  CAS  Google Scholar 

  3. M. J. Olszta, D. J. Odom, E. P. Douglas and L. B. Gower, Connect. Tissue Res., 44 Suppl 1, 326 (2003).

    Article  CAS  Google Scholar 

  4. H. P. Wiesmann, U. Meyer, U. Plate and H. J. Hohling, Int. Rev. Cytol., 242, 121 (2005).

    Article  CAS  Google Scholar 

  5. L. B. Gower, Chem. Rev., 108, 4551 (2008).

    Article  CAS  Google Scholar 

  6. H. M. Moura and M. M. Unterlass, Biomimetics (Basel), 5, 29 (2020).

    Article  CAS  Google Scholar 

  7. F. Nudelman and N. A. Sommerdijk, Angew. Chem. Int. Ed. Engl., 51, 6582 (2012).

    Article  CAS  Google Scholar 

  8. M. B. Dickerson, K. H. Sandhage and R. R. Naik, Chem. Rev., 108, 4935 (2008).

    Article  CAS  Google Scholar 

  9. C. F. Böhm, J. Harris, P. I. Schodder and S. E. Wolf, Materials, 12, 2117 (2019).

    Article  Google Scholar 

  10. N. Kroger, R. Deutzmann and M. Sumper, Science, 286, 1129 (1999).

    Article  CAS  Google Scholar 

  11. M. A. A. Abdelhamid and S. P. Pack, Acta Biomater., 120, 38 (2021).

    Article  CAS  Google Scholar 

  12. S. M. Bulatovic, Handbook of flotation reagents: Chemistry, theory and practice, in Beneficiation of silica sand, Elsevier, Canada (2015).

    Google Scholar 

  13. S. Jafari, H. Derakhshankhah, L. Alaei, A. Fattahi, B. S. Varnamkhasti and A. A. Saboury, Biomed. Pharmacother., 109, 1100 (2019).

    Article  CAS  Google Scholar 

  14. Y. Wang, Y. Huang, H. Bai, G. Wang, X. Hu, S. Kumar and R. Min, Biosensors, 11, 472 (2021).

    Article  Google Scholar 

  15. S. Kumari, K. H. Min, B. K. Kanth, E. K. Jang and S. P. Pack, Biotechnol. Bioprocess Eng., 25, 758 (2020).

    Article  CAS  Google Scholar 

  16. H. Li, X. Chen, D. Shen, F. Wu, R. Pleixats and J. Pan, Nanoscale, 13, 15998 (2021).

    Article  CAS  Google Scholar 

  17. C. J. Brinker and G. W. Scherer, Sol-gel science: The physics and chemistry of sol-gel processing, Academic Press, Boston, London (1990).

    Google Scholar 

  18. M. B. Dickerson, R. R. Naik, P. M. Sarosi, G. Agarwal, M. O. Stone K. H. Sandhage, J. Nanosci. Nanotechnol., 5, 63 (2005).

    Article  CAS  Google Scholar 

  19. M. J. Limo, A. Sola-Rabada, E. Boix, V. Thota, Z. C. Westcott, V. Puddu and C. C. Perry, Chem. Rev., 118, 11118 (2018).

    Article  CAS  Google Scholar 

  20. S. Görlich, A. J. Samuel, R. J. Best, R. Seidel, J. Vacelet, F. K. Leonarski, T. Tomizaki, B. Rellinghaus, D. Pohl and I. Zlotnikov, Proc. Natl. Acad. Sci. USA, 117, 31088 (2020).

    Article  Google Scholar 

  21. H. C. Schröder, X. Wang, A. Manfrin, S.-H. Yu, V. A. Grebenjuk, M. Korzhev, M. Wiens, U. Schlossmacher and W. E. G. Müller, J. Biol. Chem., 287, 22196 (2012).

    Article  Google Scholar 

  22. M.-R. Ki, E.-K. Jang and S. P. Pack, Process Biochem., 49, 95 (2014).

    Article  CAS  Google Scholar 

  23. A. Krasko, B. Lorenz, R. Batel, H. C. Schroder, I. M. Muller and W. E. Muller, Eur. J. Biochem., 267, 4878 (2000).

    Article  CAS  Google Scholar 

  24. W. E. Muller, A. Krasko, G. Le Pennec, R. Steffen, M. Wiens, M. S. Ammar, I. M. Muller and H. C. Schroder, Prog. Mol. Subcell. Biol., 33, 195 (2003).

    Article  Google Scholar 

  25. M. Pozzolini, L. Sturla, C. Cerrano, G. Bavestrello, L. Camardella, A. M. Parodi, F. Raheli, U. Benatti, W. E. Muller and M. Giovine, Mar. Biotechnol. (NY), 6, 594 (2004).

    Article  CAS  Google Scholar 

  26. X. Wang, H. C. Schröder and W. E. G. Müller, Trends. Biotechnol., 32, 441 (2014).

    Article  Google Scholar 

  27. S. Y. Tabatabaei Dakhili, S. A. Caslin, A. S. Faponle, P. Quayle, S. P. de Visser and L. S. Wong, Proc. Natl. Acad. Sci. USA, 114, E5285 (2017).

    Article  Google Scholar 

  28. M. R. Ki, K. B. Yeo and S. P. Pack, Bioprocess Biosyst. Eng., 36, 643 (2012).

    Article  Google Scholar 

  29. H. Oguri, K. Nakashima, K. Godigamuwa, J. Okamoto, Y. Takeda, F. Okazaki, M. Sakono and S. Kawasaki, J. Biosci. Bioeng., 133, 222 (2022).

    Article  CAS  Google Scholar 

  30. M. Fairhead, K. A. Johnson, T. Kowatz, S. A. McMahon, L. G. Carter, M. Oke, H. Liu, J. H. Naismith and C. F. van der Walle, Chem. Commun. (Camb), 15, 1765 (2008).

    Article  Google Scholar 

  31. H. Kirschke, A. J. Barrett and N. D. Rawlings, Lysosomal cysteine proteases, 2nd Edn., Oxford University Press, Oxford, New York (1998).

    Google Scholar 

  32. W. E. Muller, A. Boreiko, X. Wang, S. I. Belikov, M. Wiens, V. A. Grebenjuk, U. Schlossmacher and H. C. Schroder, Gene, 395, 62 (2007).

    Article  Google Scholar 

  33. N. V. Povarova, N. A. Barinov, M. S. Baranov, N. M. Markina, A. M. Varizhuk, G. E. Pozmogova, D. V. Klinov, V. B. Kozhemyako and K. A. Lukyanov, Sci. Rep., 8, 16759 (2018).

    Article  Google Scholar 

  34. D. G. Kamenev, Y. N. Shkryl, G. N. Veremeichik, V. A. Golotin, N. N. Naryshkina, Y. O. Timofeeva, S. N. Kovalchuk, I. V. Semiletova and V. P. Bulgakov, J. Nanosci. Nanotechnol., 15, 10046 (2015).

    Article  CAS  Google Scholar 

  35. C. L. Fisher and G. K. Pei, BioTechniques, 23, 570 (1997).

    Article  CAS  Google Scholar 

  36. T. A. Elkhooly, W. E. G. Müller, X. Wang, W. Tremel, S. Isbert and M. Wiens, Bioinspir. Biomim., 9, 044001 (2014).

    Article  CAS  Google Scholar 

  37. M. R. Ki, S. H. Kim, T. K. M. Nguyen, R. G. Son, S. H. Jun and S. P. Pack, ACS Biomater. Sci. Eng., (2022). DOI: https://doi.org/10.1021/acsbiomaterials.1c01095.

  38. D. K. Lee, M.-R. Ki, E. H. Kim, C.-J. Park, J. J. Ryu, H. S. Jang, S. P. Pack, Y. K. Jo and S. H. Jun, Biomater. Res., 25, 13 (2021).

    Article  CAS  Google Scholar 

  39. R. Andre, M. N. Tahir, T. Link, F. D. Jochum, U. Kolb, P. Theato, R. Berger, M. Wiens, H. C. Schroder, W. E. Muller and W. Tremel, Langmuir, 27, 5464 (2011).

    Article  CAS  Google Scholar 

  40. E.-j. Cheon, S.-H. Kim, D.-K. Lee, Y.-K. Jo, M.-R. Ki, C.-J. Park, H.-S. Jang, J.-S. Ahn, S.-P. Pack and S.-H. Jun, Biotechnol. Bioprocess Eng., 26, 923, (2021).

    Article  CAS  Google Scholar 

  41. L. N. Niu, K. Jiao, Y. P. Qi, S. Nikonov, C. K. Yiu, D. D. Arola, S. Q. Gong, A. El-Marakby, M. R. Carrilho, M. W. Hamrick, K. M. Hargreaves, A. Diogenes, J. H. Chen, D. H. Pashley and F. R. Tay, FASEB J., 26, 4517 (2012).

    Article  CAS  Google Scholar 

  42. Z. Lipinszki, V. Vernyik, N. Farago, T. Sari, L. G. Puskas, F. R. Blattner, G. Posfai and Z. Gyorfy, ACS Synth. Biol., 7, 2656 (2018).

    Article  CAS  Google Scholar 

  43. R. Menard, E. Carmona, S. Takebe, E. Dufour, C. Plouffe, P. Mason and J. S. Mort, J. Biol. Chem., 273, 4478 (1998).

    Article  CAS  Google Scholar 

  44. J. D. Bendtsen, H. Nielsen, G. von Heijne and S. Brunak, J. Mol. Biol., 340, 783 (2004).

    Article  Google Scholar 

  45. T. Coradin, A. Coupé and J. Livage, Colloids Surf. B Biointerfaces, 29, 189 (2003).

    Article  CAS  Google Scholar 

  46. C. J. Oldfield and A. K. Dunker, Annu. Rev. Biochem., 83, 553 (2014).

    Article  CAS  Google Scholar 

  47. J. Kozlowska, N. Stachowiak and A. Sionkowska, Polymers, 10, 456 (2018).

    Article  Google Scholar 

  48. B.-P. Jiang, L. Zhang, Y. Zhu, X.-C. Shen, S.-C. Ji, X.-Y. Tan, L. Cheng and H. Liang, J. Mater. Chem. B., 3, 3767 (2015).

    Article  CAS  Google Scholar 

  49. G. Singh, H. B. Dizaji, H. Puttuswamy and S. Sharma, Sustainability, 14, 539 (2022).

    Article  CAS  Google Scholar 

  50. R. Plowright, N. Dinjaski, S. Zhou, D. J. Belton, D. L. Kaplan and C. C. Perry, RSC Adv., 6, 21776 (2016).

    Article  CAS  Google Scholar 

  51. S. Wang, X. Wang, F. G. Draenert, O. Albert, H. C. Schröder, V. Mailänder, G. Mitov and W. E. G. Müller, Bone, 67, 292 (2014).

    Article  Google Scholar 

  52. W. E. G. Müller, H. C. Schröder, Q. Feng, U. Schlossmacher, T. Link and X. Wang, J. Tissue Eng. Regen. Med., 9, E39 (2015).

    Article  Google Scholar 

  53. W. Zhu, X. Gao, X. Zou, W. E. G. Müller, S. Wang, Y. Wang and Y. Liu, J. Biomater Tissue Eng., 8, 258 (2018).

    Article  Google Scholar 

  54. O. Dudik, S. Amorim, J. R. Xavier, H. T. Rapp, T. H. Silva, R. A. Pires and R. L. Reis, Front. Mar. Sci., 8, 637810 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2021R1A5A8032895, NRF-2021R1A2C2011564). This work was also supported by the National Research Foundation of Korea (NRF) funded by the Korea Ministry of Education (NRF-2021 R1I1A3046565). This work was also supported by Korea Environmental Industry & Technology Institute (KEITI) through Project to develop eco-friendly new materials and processing technology derived from wildlife, funded by Korea Ministry of Environment (MOE) (RE202101398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Pil Pack.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ki, MR., Park, K.S., Abdelhamid, M.A.A. et al. Novel silicatein-like protein for biosilica production from Amphimedon queenslandica and its use in osteogenic composite fabrication. Korean J. Chem. Eng. 40, 419–428 (2023). https://doi.org/10.1007/s11814-022-1314-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1314-x

Keywords

Navigation