Skip to main content
Log in

Jammed microgels fabricated via various methods for biological studies

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microgels, hydrogels fabricated in microscale via various methods, can be jammed, and the jammed state can be influenced by some factors such as volume fraction (ϕ), pressure and temperature. Compared to bulk hydrogels, jammed microgels have distinct characteristics. Structures of jammed microgels, stable through a balance of effective forces applied to them, can be changed by application of forces or pressure, implying shear-thinnning properties. Additionally, the ability to maintain structures under a static condition and porous internal structures of them has been extensively exploited in researches. Additional materials can be involved in jammed microgels for additional features (e.g., conductivity), and overall mechanical properties can be also controlled. These characteristics have been used in diverse biological studies by developing them as injectable scaffolds, drug delivery vehicles and inks and support bath in 3D printing processes. In this review, jamming processes, characteristics of jammed microgels, fabrication methods of microgels and applications of jammed microgels are discussed to provide a comprehensive understanding of jammed microgels and promote their use in diverse researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Cai and R. B. Gupta, Kirk-Othmer Encycl. Chem. Technol. 1 (2012). doi:https://doi.org/10.1002/0471238961.0825041807211620.a01.pub2.

  2. K. Y. Lee and D. J. Mooney, Chem. Rev., 101, 1869 (2001).

    Article  CAS  Google Scholar 

  3. A. S. Hoffman, Adv. Drug Deliv. Rev., 64, 18 (2012).

    Article  Google Scholar 

  4. A. C. Daly, L. Riley, T. Segura and J. A. Burdick, Nat. Rev. Mater., 5, 20 (2020).

    Article  CAS  Google Scholar 

  5. L. Riley, L. Schirmer and T. Segura, Curr. Opin. Biotechnol., 60, 1 (2019).

    Article  CAS  Google Scholar 

  6. W. Cheng, J. Zhang, J. Liu and Z. Yu, View, 1, 20200060 (2020).

    Article  Google Scholar 

  7. J. R. Purdon Jr. and R. D. Mate, J. Polym. Sci. Part A-1 Polym. Chem., 8, 1306 (1970).

    Article  CAS  Google Scholar 

  8. W. Richtering and B. R. Saunders, Soft Matter, 10, 3695 (2014).

    Article  CAS  Google Scholar 

  9. N. Gogoi and D. Chowdhury, J. Mater. Chem. B, 2, 4089 (2014).

    Article  CAS  Google Scholar 

  10. X. Hu, L. Long, T. Gong, J. Zhang, J. Yan and Y. Xue, Chemosphere, 240, 124860 (2020).

    Article  CAS  Google Scholar 

  11. A. Sohail, M. S. Turner, E. K. Prabawati, A. G. A. Coombes and B. Bhandari, Int. J. Food Microbiol., 157, 162 (2012).

    Article  CAS  Google Scholar 

  12. R. J. Ketz, R. K. Prud’homme and W. W. Graessley, Rheol. Acta, 27, 531 (1988).

    Article  CAS  Google Scholar 

  13. M. E. Cates, J. P. Wittmer, J. P. Bouchaud and P. Claudin, Phys. Rev. Lett., 81, 1841 (1998).

    Article  CAS  Google Scholar 

  14. C. S. O’Hern, L. E. Silbert, A. J. Liu and S. R. Nagel, Phys. Rev. E — Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top., 68, 19 (2003).

    Google Scholar 

  15. A. J. Liu and S. R. Nagel, Nature, 396, 21 (1998).

    Article  CAS  Google Scholar 

  16. T. H. Qazi, V. G. Muir and J. A. Burdick, ACS Biomater. Sci. Eng., 8, 1427 (2022).

    Article  CAS  Google Scholar 

  17. C. B. Highley, K. H. Song, A. C. Daly and J. A. Burdick, Adv. Sci., 6, 1801076 (2019).

    Article  Google Scholar 

  18. D. Moon, M.-G. Lee, J.-Y. Sun, K. H. Song and J. Doh, Macromol. Rapid Commun., e2200271 (2022). doi:https://doi.org/10.1002/marc.202200271.

  19. A. Charlet, M. Hirsch, S. Schreiber and E. Amstad, Small, 18, 2107128 (2022).

    Article  CAS  Google Scholar 

  20. C. S. O’Bryan, C. P. Kabb, B. S. Sumerlin and T. E. Angelini, ACS Appl. Bio Mater., 2, 1509 (2019).

    Article  Google Scholar 

  21. E. Mirdamadi, N. Muselimyan, P. Koti, H. Asfour and N. Sarvazyan, 3D Print. Addit. Manuf., 6, 158 (2019).

    Article  Google Scholar 

  22. D. R. Griffin, W. M. Weaver, P. O. Scumpia, D. Di Carlo and T. Segura, Nat. Mater., 14, 737 (2015).

    Article  CAS  Google Scholar 

  23. S. D. Edwards, S. Hou, J. M. Brown, R. D. Boudreau, Y. Lee, Y. J. Kim and K. J. Jeong, ACS Appl. Bio Mater., 5, 2786 (2022).

    Article  CAS  Google Scholar 

  24. C. E. Miksch, N. P. Skillin, B. E. Kirkpatrick, G. K. Hach, V. V Rao, T. J. White and K. S. Anseth, Small, 18, 2200951 (2022).

    Article  CAS  Google Scholar 

  25. J. Fang, J. Koh, Q. Fang, H. Qiu, M. M. Archang, M. M. Hasani-Sadrabadi, H. Miwa, X. Zhong, R. Sievers, D.-W. Gao, R. Lee, D. Di Carlo and S. Li, Adv. Funct. Mater., 30, 2070289 (2020).

    Article  CAS  Google Scholar 

  26. Q. Pang, J. Zhao, S. Zhang and X. Zhang, J. Biomater. Sci. Polym. Ed., 31, 2252 (2020).

    Article  CAS  Google Scholar 

  27. S. A. Bencherif, R. Warren Sands, O. A. Ali, W. A. Li, S. A. Lewin, T. M. Braschler, T.-Y. Shih, C. S. Verbeke, D. Bhatta, G. Dranoff and D. J. Mooney, Nat. Commun., 6, 7556 (2015).

    Article  CAS  Google Scholar 

  28. S. A. Bencherif, R. W. Sands, D. Bhatta, P. Arany, C. S. Verbeke, D. A. Edwards and D. J. Mooney, Proc. Natl. Acad. Sci., 109, 19590 (2012).

    Article  CAS  Google Scholar 

  29. S. Duin, K. Schütz, T. Ahlfeld, S. Lehmann, A. Lode, B. Ludwig and M. Gelinsky, Adv. Healthc. Mater., 8, 1801631 (2019).

    Article  Google Scholar 

  30. M. Müller, J. Becher, M. Schnabelrauch and M. Zenobi-Wong, Biofabrication, 7, 035006 (2015).

    Article  Google Scholar 

  31. L. Ouyang, C. B. Highley, C. B. Rodell, W. Sun and J. A. Burdick, ACS Biomater. Sci. Eng., 2, 1743 (2016).

    Article  CAS  Google Scholar 

  32. Y. Cao, C. Zhang, W. Shen, Z. Cheng, L. (Lucy) Yu and Q. Ping, J. Control. Release, 120, 186 (2007).

    Article  CAS  Google Scholar 

  33. S. Ishii, J. Kaneko and Y. Nagasaki, Biomaterials, 84, 210 (2016).

    Article  CAS  Google Scholar 

  34. R. M. Desai, S. T. Koshy, S. A. Hilderbrand, D. J. Mooney and N. S. Joshi, Biomaterials, 50, 30 (2015).

    Article  CAS  Google Scholar 

  35. E. A. Silva and D. J. Mooney, J. Thromb. Haemost., 5, 590 (2007).

    Article  CAS  Google Scholar 

  36. E. A. Silva, E.-S. Kim, H. J. Kong and D. J. Mooney, Proc. Natl. Acad. Sci., 105, 14347 (2008).

    Article  CAS  Google Scholar 

  37. O. Jeon, Y. B. Lee, T. J. Hinton, A. W. Feinberg and E. Alsberg, Mater. Today Chem., 12, 61 (2019).

    Article  CAS  Google Scholar 

  38. J. M. de Rutte, J. Koh and D. Di Carlo, Adv. Funct. Mater., 29, 1900071 (2019).

    Article  Google Scholar 

  39. Z.-T. Xie, D.-H. Kang and M. Matsusaki, Soft Matter, 17, 8769 (2021).

    Article  CAS  Google Scholar 

  40. A. Basu, Y. Xu, T. Still, P. E. Arratia, Z. Zhang, K. N. Nordstrom, J. M. Rieser, J. P. Gollub, D. J. Durian and A. G. Yodh, Soft Matter, 10, 3027 (2014).

    Article  CAS  Google Scholar 

  41. A. Ikeda, L. Berthier and G. Biroli, J. Chem. Phys., 138, 12A507 (2013).

    Article  Google Scholar 

  42. E. R. Weeks, Stat. Phys. Complex Fluids, 2, 87 (2007).

    Google Scholar 

  43. W. G. Ellenbroek, E. Somfai, M. van Hecke and W. van Saarloos, Phys. Rev. Lett., 97, 258001 (2006).

    Article  Google Scholar 

  44. M. van Hecke, J. Phys. Condens. Matter, 22, 33101 (2009).

    Article  Google Scholar 

  45. S. Torquato and F. H. Stillinger, Rev. Mod. Phys., 82, 2633 (2010).

    Article  Google Scholar 

  46. Z. Nussinov, P. Johnson, M. J. Graf and A. V. Balatsky, Phys. Rev. B, 87, 184202 (2013).

    Article  Google Scholar 

  47. N. M. James, H. Xue, M. Goyal and H. M. Jaeger, Soft Matter, 15, 3649 (2019).

    Article  CAS  Google Scholar 

  48. A. Ghosh, G. Chaudhary, J. G. Kang, P. V. Braun, R. H. Ewoldt and K. S. Schweizer, Soft Matter, 15, 1038 (2019).

    Article  CAS  Google Scholar 

  49. G. M. Conley, C. Zhang, P. Aebischer, J. L. Harden and F. Scheffold, Nat. Commun., 10, 1 (2019).

    Article  CAS  Google Scholar 

  50. P. Jiang, C. Yan, Y. Guo, X. Zhang, M. Cai, X. Jia, X. Wang and F. Zhou, Biomater. Sci., 7, 1805 (2019).

    Article  CAS  Google Scholar 

  51. H. Zhang, Y. Cong, A. R. Osi, Y. Zhou, F. Huang, R. P. Zaccaria, J. Chen, R. Wang and J. Fu, Adv. Funct. Mater., 30, 1 (2020).

    Google Scholar 

  52. S. Xin, D. Chimene, J. E. Garza, A. K. Gaharwar and D. L. Alge, Biomater. Sci., 7, 1179 (2019).

    Article  CAS  Google Scholar 

  53. P. Zhao, J. Wang, C. Chen, J. Wang, G. Liu, K. Nandakumar, Y. Li and L. Wang, Micromachines, 13, 200 (2022).

    Article  Google Scholar 

  54. M. Shin, K. H. Song, J. C. Burrell, D. K. Cullen and J. A. Burdick, Adv. Sci., 6, 1901229 (2019).

    Article  CAS  Google Scholar 

  55. M. Hirsch, A. Charlet and E. Amstad, Adv. Funct. Mater., 31, 2005929 (2021).

    Article  CAS  Google Scholar 

  56. A. Moreira, J. Carneiro, J. B. L. M. Campos and J. M. Miranda, Microfluid. Nanofluidics, 25, 10 (2021).

    Article  CAS  Google Scholar 

  57. A. B. Subramaniam, M. Abkarian and H. A. Stone, Nat. Mater., 4, 553 (2005).

    Article  CAS  Google Scholar 

  58. N. Zoratto, D. Di Lisa, J. de Rutte, M. N. Sakib, A. R. Alves e Silva, A. Tamayol, D. Di Carlo, A. Khademhosseini and A. Sheikhi, Bioeng. Transl. Med., 5, 1 (2020).

    Article  Google Scholar 

  59. S.-Y. Teh, R. Lin, L.-H. Hung and A. P. Lee, Lab Chip, 8, 198 (2008).

    Article  CAS  Google Scholar 

  60. S. Seiffert and D. A. Weitz, Polymer (Guildf), 51, 5883 (2010).

    Article  CAS  Google Scholar 

  61. D. M. Headen, J. R. García and A. J. García, Microsystems Nanoeng., 4, 1 (2018).

    Article  Google Scholar 

  62. J. Zhang, X. Li, D. Zhang and Z. Xiu, J. Microencapsul., 24, 303 (2007).

    Article  CAS  Google Scholar 

  63. B. B. Lee, P. Ravindra and E. S. Chan, Chem. Eng. Technol., 36, 1627 (2013).

    CAS  Google Scholar 

  64. A. S. Qayyum, E. Jain, G. Kolar, Y. Kim, S. A. Sell and S. P. Zustiak, Biofabrication, 9, 025019 (2017).

    Article  Google Scholar 

  65. T. A. B. Bressel, A. H. Paz, G. Baldo, E. O. C. Lima, U. Matte and M. L. Saraiva-Pereira, Genet. Mol. Biol., 31, 136 (2008).

    Article  CAS  Google Scholar 

  66. Y. Morimoto, M. Onuki and S. Takeuchi, Adv. Healthc. Mater., 6, 1 (2017).

    Article  Google Scholar 

  67. P. H. Kim, H. G. Yim, Y. J. Choi, B. J. Kang, J. Kim, S. M. Kwon, B. S. Kim, N. S. Hwang and J. Y. Cho, J. Control. Release, 187, 1 (2014).

    Article  CAS  Google Scholar 

  68. T. G. Molley, G. K. Jalandhra, S. R. Nemec, A. S. Tiffany, B. A. C. Harley, T. Hung and K. A. Kilian, bioRxiv, 2020.08.30.274654 (2020).

  69. W. Leong, T. T. Lau and D. A. Wang, Acta Biomater., 9, 6459 (2013).

    Article  CAS  Google Scholar 

  70. A. Lee, A. R. Hudson, D. J. Shiwarski, J. W. Tashman, T. J. Hinton, S. Yerneni, J. M. Bliley, P. G. Campbell and A. W. Feinberg, Science, 365, 482 (2019).

    Article  CAS  Google Scholar 

  71. S. Roh, D. P. Parekh, B. Bharti, S. D. Stoyanov and O. D. Velev, Adv. Mater., 29, 1 (2017).

    Google Scholar 

  72. D. B. Gehlen, N. Jürgens, A. Omidinia-Anarkoli, T. Haraszti, J. George, A. Walther, H. Ye and L. De Laporte, Macromol. Rapid Commun., 41, 1 (2020).

    Article  Google Scholar 

  73. K. Song, A. M. Compaan, W. Chai and Y. Huang, ACS Appl. Mater. Interfaces, 12, 22453 (2020).

    Article  CAS  Google Scholar 

  74. D. Zhao, Y. Liu, B. Liu, Z. Chen, G. Nian, S. Qu and W. Yang, ACS Appl. Mater. Interfaces, 13, 13714 (2021).

    Article  CAS  Google Scholar 

  75. T. J. Hinton, Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A. R. Hudson and A. W. Feinberg, Sci. Adv., 1, e1500758 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

Kwang Hoon Song and Junsang Doh contributed equally to this work as corresponding authors. This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (p0011266), the National Research Council of Science & Technology (NST) grant by the Korea government (CAP-18-02-KRIBB), and the National Research Foundation of Korea (NRF) grant (No. NRF-2021R1 C1C1010633, No. NRF-2020R1A2B5B03001747).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang Hoon Song or Junsang Doh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, D., Song, K.H. & Doh, J. Jammed microgels fabricated via various methods for biological studies. Korean J. Chem. Eng. 40, 267–275 (2023). https://doi.org/10.1007/s11814-022-1310-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1310-1

Keywords

Navigation