Skip to main content
Log in

Boiling heat transfer characteristics of bionic flower bud structure microchannels

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

interface area [m2]

c:

specific heat capacity [J·kg−1-K−1]

db :

bubble diameter [m]

E:

internal energy [J]

F:

surface tension source term [N·m−3]

g:

acceleration of gravity [m·s−2]

h:

heat transfer coefficient [W·m2·K−1]

hf :

standard state enthalpy [J·kg−1·mol−1]

hs :

enthalpy of saturated state [J·kg−1·mol−1]

k:

thermal conductivity [W·m−1·K−1]

L:

length [m]

L qr :

latent heat [kJ·kg−1]

mlv :

mass exchange rate [kg·m−3·s−1]

M:

molar mass [kg·kmol−1]

P:

pressure [Pa]

Rb :

bud radius [m]

R:

gas constant

S:

source term

T:

temperature [K]

t:

time [s]

u:

velocity [m·s−1]

β :

accommodation coefficient

η :

evaporative heat transfer coefficient

μ :

dynamic viscosity [Pa·s]

ρ :

density [kg·m−3]

l:

liquid phase

v:

gas phase

*:

gas phase part

References

  1. X. Yang, J. Liu, G. Wang and J. Wei, Appl. Therm. Eng., 210, 118350 (2022).

    Article  CAS  Google Scholar 

  2. Y. Wang, C. Qi, R. Zhao and C. Wang, Appl. Therm. Eng., 208, 118258 (2022).

    Article  CAS  Google Scholar 

  3. E. C. Okonkwo, I. Wole-Osho, I. W. Almanassra, Y. M. Abdullatif and T. Al-Ansari, J. Therm. Anal. Calorim., 145(6), 2817 (2021).

    Article  CAS  Google Scholar 

  4. T. G. Karayiannis and M. M. Mahmoud, Appl. Therm. Eng., 115, 1372 (2017).

    Article  CAS  Google Scholar 

  5. Y. Jia, J. Huang, J. Wang and H. Li, Entropy, 23(11), 1482 (2021).

    Article  CAS  Google Scholar 

  6. Z. Xu, J. Wang, Y. Jia, X. Geng and Z. Liu, Appl. Therm. Eng., 108, 150 (2016).

    Article  Google Scholar 

  7. Y. Jia, S. Yao, J. Wang and H. Li, Chem. Ind. Eng. Prog., 40(12), 6423 (2021).

    Google Scholar 

  8. K. Zhang, L. Bai, H. Jin, G. Lin, G. Yao and D. Wen, Appl. Therm. Eng., 202, 117759, (2022).

    Article  Google Scholar 

  9. S. Rostami, M. Afrand, A. Shahsavar, M. Sheikholeslami, R. Kalbasi, S. Aghakhani, M. S. Shadloo and H. F. Oztop, Energy, 211, 118698 (2020).

    Article  CAS  Google Scholar 

  10. S. Deb, M. Das, D. C. Das, S. Pal, A. K. Das and R. Das, Int. J. Heat Mass Transf., 170, 120994 (2021).

    Article  CAS  Google Scholar 

  11. S. Deb, S. Pal, D. C. Das, M. Das, A. K. Das and R. Das, Heat Mass Transfer, 56(12), 3273 (2020).

    Article  CAS  Google Scholar 

  12. T. Y. Zhang, L. W. Mou, Y. C. Zhang, J. Y. Zhang, J. Q. Li and L. W. Fan, Case Stud. Therm. Eng., 24, 100882 (2021).

    Article  Google Scholar 

  13. T. Y. Zhang, L. W. Mou and L. W. Fan, Appl. Therm. Eng., 185, 116453 (2021).

    Article  Google Scholar 

  14. A. Recinella and S. G. Kandlikar, J. Heat Trans-T Asme, 140(2), 021502 (2018).

    Article  Google Scholar 

  15. K. P. Drummond, D. Back, M. D. Sinanis, D. B. Janes, D. Peroulis, J. A. Weibel and S. V. Garimella, Int. J. Heat Mass Transf., 117, 319 (2018).

    Article  CAS  Google Scholar 

  16. P. Cheng, G. Wang and X. Quan, J. Heat Trans-T Asme, 131(4), 043211 (2009).

    Article  Google Scholar 

  17. H. Sun, G. Lin, H. Jin, X. Bu, C. Cai, Q. Jia, K. Ma and D. Wen, Renew. Energ., 179, 1179 (2021).

    Article  Google Scholar 

  18. T. P. Rasitha, C. Thinaharan, S. C. Vanithakumari and J. Philip, Colloid Surf. A, 636, 128110, (2022).

    Article  CAS  Google Scholar 

  19. R. TP and J. Philip, Appl. Surf. Sci., 585, 152628 (2022).

    Article  CAS  Google Scholar 

  20. S. C. Vanithakumari, G. Jena, S. Sofia, C. Thinaharan, R. P. George and J. Philip, Surf. Coat. Tech., 400, 126074 (2020).

    Article  CAS  Google Scholar 

  21. W. Li, K. Zhou, J. Li, Z. Feng and H. Zhu, Int. J. Heat Mass Transf., 119, 601 (2018).

    Article  CAS  Google Scholar 

  22. W. Zhou, D. Han and G. Xia, Appl. Surf. Sci., 591, 153155 (2022).

    Article  CAS  Google Scholar 

  23. N. G. Tran and D. M. Chun, J. Mater. Process. Tech., 297, 117245 (2021).

    Article  CAS  Google Scholar 

  24. A. S. T. Kaya and U. Cengiz, Prog. Org. Coat., 126, 75 (2019).

    Article  Google Scholar 

  25. T. Adachi, S. S. Latthe, S. W. Gosavi, N. Roy, N. Suzuki, H. Ikari, K. Kato, K. i. Katsumata, K. Nakata, M. Furudate, T. Inoue, T. Kondo, M. Yuasa, A. Fujishima and C. Terashima, Appl. Surf. Sci., 458, 917 (2018).

    Article  CAS  Google Scholar 

  26. Y. Ma, J. Tong, M. Zhuang, J. Liu, S. Cheng, X. Pei, H. Li and D. Sang, Results Phys., 15, 102628 (2019).

    Article  Google Scholar 

  27. A. Mahringer, M. Hennemann, T. Clark, T. Bein and D. D. Medina, Angew. Chem. Int. Ed. Eng., 60(10), 5519 (2021).

    Article  Google Scholar 

  28. O. Sato, S. Kubo and Z. Z. Gu, Accounts Chem. Res., 42(1), 1 (2009).

    Article  CAS  Google Scholar 

  29. Y. Deng, G. Zhang, R. Bai, S. Shen, X. Zhou and I. Wyman, J. Membr. Sci., 569, 60 (2019).

    Article  CAS  Google Scholar 

  30. Y. Feng, F. Chang, Z. Hu, H. Li and J. Zhao, Int. J. Therm. Sci., 163, 106814 (2021).

    Article  Google Scholar 

  31. L. Liao, R. Bao and Z. Liu, Heat Mass Transfer, 44(12), 1447 (2008).

    Article  Google Scholar 

  32. R. Liu and Z. Liu, Int. J. Heat Mass Transf., 143, 118534 (2019).

    Article  CAS  Google Scholar 

  33. K. Vontas, M. Andredaki, A. Georgoulas, N. Miché and M. Marengo, Int. J. Heat Mass Transf., 172, 121133 (2021).

    Article  Google Scholar 

  34. H. T. Phan, N. Caney, P. Marty, S. Colasson and J. Gavillet, CR. Mécanique, 337(5), 251 (2009).

    Article  CAS  Google Scholar 

  35. G. D. Sia, M. K. Tan, G. M. Chen and Y. M. Hung, Case Stud. Therm. Eng., 27, 101283 (2021).

    Article  Google Scholar 

  36. G. Yang, J. Liu, X. Cheng, Y. Wang, X. Chu, S. Mukherjee, A. Terzis, A. Schneemann, W. Li, J. Wu and R. A. Fischer, J. Mater. Chem. A, 9(45), 25480 (2021).

    Article  CAS  Google Scholar 

  37. Y. S. Lim and Y. M. Hung, Energy Convers. Manage., 244, 114522 (2021).

    Article  CAS  Google Scholar 

  38. H. Ze, F. Wu, S. Chen and X. Gao, Adv. Mater. Interfaces, 7(14), 2000482 (2020).

    Article  CAS  Google Scholar 

  39. Y. Nam, E. Aktinol, V. K. Dhir and Y. S. Ju, Int. J. Heat Mass Transf., 54(7–8), 1572 (2011).

    Article  CAS  Google Scholar 

  40. C. W. Lin, Y. C. Lin, T. C. Hung, M. C. Lin and H. Y. Hsu, Int. J. Heat Mass Transf., 171, 121058 (2021).

    Article  Google Scholar 

  41. H. Zhan, S. Li, Z. Jin, G. Zhang, L. Wang, Q. Li and Z. Zhang, J. Mech. Sci. Technol., 36(2), 1025 (2022).

    Article  Google Scholar 

  42. K. Ling, Z. Y. Li and W. Q. Tao, Numer. Heat Tr. A-Appl., 65(10), 949 (2014).

    Article  CAS  Google Scholar 

  43. K. Vontas, M. Andredaki, A. Georgoulas, N. Miché and M. Marengo, Int. J. Heat Mass Transf., 172, 121133 (2021).

    Article  Google Scholar 

  44. M. Knudesen, The kinetic theory of gases, CRC Press. Publications, Boston (1998).

    Google Scholar 

  45. D. Lide, CRC handbook of chemistry and physics, CRC Press. Publications, Florida (2003).

    Google Scholar 

  46. J. Zhang, Study on enhanced boiling heat transfer characteristics of microstructured heat exchange surfaces, MA thesis, JUST, Zhenjiang (2016).

    Google Scholar 

  47. Y. Lin, Y. Luo, W. Li and W. J. Minkowycz, Int. J. Heat Mass Transf., 179, 121739 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Wang, C., Qi, C. et al. Boiling heat transfer characteristics of bionic flower bud structure microchannels. Korean J. Chem. Eng. 39, 3246–3260 (2022). https://doi.org/10.1007/s11814-022-1256-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1256-3

Keywords

Navigation