Skip to main content
Log in

Comprehensive evaluation of high-temperature sintering behavior of sea sand vanadia-titania magnetite based on grey relational analysis

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sea sand vanadia-titania magnetite is difficult to pelletize, and it is difficult for iron and steel enterprises to use it as a raw material for ironmaking. In this paper, the high-temperature physicochemical characteristics and sintering behavior of sea sand vanadia-titania magnetite were comprehensively studied and systematically evaluated. The high-temperature metallurgical physicochemical characteristics of different iron ore powders and under different experimental conditions were studied by the micro-sintering experimental system. The high-temperature sintering indexes were comprehensively evaluated by the grey correlation analysis, and the influence of sea sand ore on sintering performance was investigated by sintering pot experiment. The research results show that the high-temperature sintering characteristics of sea sand vanadia-titania magnetite were the worst, and the grey correlation degree was the lowest. The high-temperature sintering characteristics of sintered blocks with sea sand ore were affected by changing the basicity and the addition amount of sea sand ore. When the basicity was 0.8 and the addition amount of sea sand ore was 15 wt%, the evaluation index of grey relational analysis was the best. The vertical sintering speed and tumble index were slightly reduced by adding sea sand ore, but the sinter yield was improved and the particle size distribution of sinter was optimized. The experimental results provide a certain data reference for the actual production of sinter with sea sand vanadia-titania magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Cheng, X. X. Xue, T. Jiang and P. N. Duan, Metall. Mater. Trans. B, 47(3), 1713 (2016).

    Article  CAS  Google Scholar 

  2. Y. N. Lu, S. L. Wu, H. Zhou, L. M. Ma, Z. J. Liu and Y. Wang, ISIJ Int., 61(8), 2211 (2021).

    Article  CAS  Google Scholar 

  3. H. G. Du, Principle of smelting vanadium-titanium magnetite in the blast furnace, 1st ed., Science Press, Beijing, China (1996).

    Google Scholar 

  4. G. J. Cheng, Z. X. Xing, H. Yang and X. X. Xue, Minerals, 11(1), 87 (2021).

    Article  Google Scholar 

  5. J. B. Wright, N. Z. J. Geol. Geophys., 10(3), 659 (1967).

    Article  CAS  Google Scholar 

  6. Z. X. Xing, G. J. Cheng, Z. X. Gao, H. Yang and X. X. Xue, Metall. Res. Technol., 117, 411 (2020).

    Article  CAS  Google Scholar 

  7. Z. X. Xing, G. J. Cheng, H. Yang and X. X. Xue, Experimental research on preparation of oxidized pellets with high proportion sea sand mine, The 12th CSM Steel Congress, Beijing (2019).

  8. Y. L. Qin, Q. F. Ling, K. Zhang and H. Liu, Minerals, 11(8), 793 (2021).

    Article  CAS  Google Scholar 

  9. Z. Wang, D. Pinson, S. Chew, H. Rogers, B. J. Monaghan, M. I. Pownceby, N. A. S. Webster and G. Q. Zhang, Metall. Mater. Trans. B, 47, 330 (2016).

    Article  CAS  Google Scholar 

  10. Z. X. Xing, G. J. Cheng, Z. X. Gao, H. Yang and X. X. Xue, Metals, 11(2), 269 (2021).

    Article  CAS  Google Scholar 

  11. A. Podder, Trans. Indian Inst. Met., 74(6), 1479 (2021).

    Article  CAS  Google Scholar 

  12. E. Park and O. Ostrovski, ISIJ Int., 44, 74 (2004).

    Article  CAS  Google Scholar 

  13. R. J. Longbottom, B. J. Monaghan and J. G. Mathieson, ISIJ Int., 53, 1152 (2013).

    Article  CAS  Google Scholar 

  14. C. Geng, T. C. Sun, Y. W. Ma, C. Y. Xu and H. F. Yang, J. Iron Steel Res. Int., 24, 156 (2017).

    Article  Google Scholar 

  15. S. L. Wu, Y. M. Dai, O. Dauter, Y. D. Pei, J. Xu and H. L. Han, J. Univ. Sci. Technol. Beijing, 32(6), 719 (2010).

    CAS  Google Scholar 

  16. S. L. Wu, Y. Liu, J. X. Du, K. Mi and H. Lin, J. Univ. Sci. Technol. Beijing, 24(3), 254 (2002).

    CAS  Google Scholar 

  17. H. Zhou, J. K. Wang, P. N. Ma, H. X. Meng, F. Z. Cheng and J. W. Luo, J. Mater. Res. Technol., 15, 4475 (2021).

    Article  CAS  Google Scholar 

  18. M. X. Zhou and H. Zhou, J. Mater. Res. Technol., 9, 13106 (2020).

    Article  CAS  Google Scholar 

  19. Y. X. Xue, J. Pan, D. Q. Zhu, Z. Q. Guo, C. C. Yang, L. M. Lu and H. Y. Tian, Minerals, 10(9), 802 (2020).

    Article  CAS  Google Scholar 

  20. S. L. Wu and G. L. Zhang, Steel Research Int., 86(9), 1014 (2015).

    Article  CAS  Google Scholar 

  21. S. L. Wu, B. Su, Y. H. Qi, M. Y. Kou, Y. Li and W. L. Zhang, Metall. Mater. Trans. B, 48(5), 2469 (2017).

    Article  CAS  Google Scholar 

  22. X. B. Zhai, S. L. Wu, H. Zhou, L. X. Su and X. D. Ma, Ironmak. & Steelmak., 47(4), 405 (2020).

    Article  CAS  Google Scholar 

  23. D. H. Liu, H. Liu, J. L. Zhang, Z. J. Liu, X. Xue, G. W. Wang and Q. F. Kang, Int. J. Min. Met. Mater., 24(9), 991 (2017).

    Article  CAS  Google Scholar 

  24. D. H. Liu, J. H. Li, Y. Peng, J. L. Zhang, G. W. Wang and X. Xue, J. Iron Steel Res. Int., 26, 691 (2019).

    Article  CAS  Google Scholar 

  25. D. H. Liu, J. L. Zhang, Z. J. Liu, Y. Z. Wang, X. Xue and J. Yan, JOM, 68(9), 2418 (2016).

    Article  CAS  Google Scholar 

  26. S. L. Wu, H. L. Han, H. X. Li, J. Xu, S. D. Yang and X. Q. Liu, Int. J. Miner. Metall. Mater., 17(1), 11 (2010).

    Article  CAS  Google Scholar 

  27. G. L. Zhang, S. L. Wu, S. G. Chen, B. Su, Z. G. Que and C. G. Hou, Int. J. Miner. Metall. Mater., 21(10), 962 (2014).

    Article  CAS  Google Scholar 

  28. G. J. Cheng, L. J. Li, X. X. Xue, H. Yang, W. J. Zhang and R. G. Bai, J. Mater. Res. Technol., 17, 2657 (2022).

    Article  CAS  Google Scholar 

  29. J. L. Zhang, Z. W. Hu, H. B. Zuo, Z. J. Liu, Z. X. Zhao and T. J. Yang, Ironmak. & Steelmak., 41(4), 279 (2014).

    Article  CAS  Google Scholar 

  30. H. He, X. Lv and J. Wang, Mining Metall. & Explor., 38, 2271 (2021).

    Google Scholar 

  31. Y. N. Qie, D. H. Liu, Q. Lv, X. J. Liu and Y. Q. Sun, J. Iron Steel Res., 27(9), 14 (2015).

    CAS  Google Scholar 

  32. Y. Wang, C. Zhang and G. P. Jiang, Int. J. Min. Sci. Technol., 26(3), 395 (2016).

    Article  Google Scholar 

  33. G. L. Zhang, S. L. Wu, S. G. Chen, J. Zhu, J. X. Fan and B. Su, ISIJ Int., 53(9), 1515 (2013).

    Article  CAS  Google Scholar 

  34. W. D. Tang, S. T. Yang, G. J. Cheng, Z. X. Gao, H. Yang and X. X. Xue, Minerals, 8(7), 263 (2018).

    Article  Google Scholar 

  35. S. T. Yang, M. Zhou, T. Jiang, Y. J. Wang and X. X. Xue, T. Nonferr. Metal. Soc., 25(6), 2087 (2015).

    Article  CAS  Google Scholar 

  36. L. H. Zhang, Z. X. Gao, S. T. Yang, W. D. Tang and X. X. Xue, Metals, 10(5), 569 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are especially thankful to the National Natural Science Foundation of China (Grant No.51674084, 21908020 and U1908226) and Fundamental Research Funds for the Central Universities (Grant No. N182503035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-xin Xue or Guo-dong Zhang.

Additional information

Declaration of Competing Interest

The authors report there are no competing interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Zx., Huang, Z., Cheng, Gj. et al. Comprehensive evaluation of high-temperature sintering behavior of sea sand vanadia-titania magnetite based on grey relational analysis. Korean J. Chem. Eng. 39, 3464–3472 (2022). https://doi.org/10.1007/s11814-022-1242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1242-9

Keywords

Navigation