Skip to main content
Log in

Numerical investigation of the rotating instability uniqueness in a MWe scale supercritical carbon dioxide centrifugal compressor

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Flow instability attracts much attention for air compressors but little for a supercritical carbon dioxide (CO2) compressor that is a critical component in the supercritical CO2 Brayton cycle. This paper presents a numerical investigation of the rotating instability in a megawatt-scale (MWe-scale) supercritical CO2 centrifugal compressor from the Institute of Engineering Thermophysics. Unsteady full annulus simulations were carried out at different operating conditions and validated by the experimental data. According to the validated method, we analyzed the blade tip leakage flow, the rotating instability, and the propagation speed of the stalled flow cell. The findings are that (1) the blockage effects of leakage flow are responsible for rotating instability, and (2) the propagation speed of rotating cells is approximately 16.67% of the rotor speed. The novelty is that the figure is lower than that in air compressors, close to that found in water pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Frigne and R. Van Den Braembussche, J. Eng. Gas Turbines Power, 106, 468 (1984).

    Article  Google Scholar 

  2. U. Haupt, K. Bammert and M. Rautenberg, Proceedings of the ASME 1985 International Gas Turbine Conference and Exhibit, 4, V004T13A007 (1985).

    Article  Google Scholar 

  3. E. Lennemann and J. H. G. Howard, J. Eng. Power, 92, 65 (1970).

    Article  Google Scholar 

  4. S. Mizuki and Y. Oosawa, J. Turbomach, 114, 312 (1992).

    Article  Google Scholar 

  5. D. A. Hoying, C. S. Tan, H. D. Vo and E. M. Greitzer, J. Turbomach., 121, 735 (1999).

    Article  Google Scholar 

  6. H. D. Vo, C. S. Tan and E. M Greitzer, J. Turbomach., 130, 011023 (2008).

    Article  Google Scholar 

  7. C. Yang, Y. Wang, D. Lao, D. Tong, L. Wei and Y. Liu, J. Therm. Sci., 25, 312 (2016).

    Article  Google Scholar 

  8. M. Schleer and R. S. Abhari, J. Turbomach., 130, 031009 (2008).

    Article  Google Scholar 

  9. F. Kameier and W. Neise, J. Sound. Vib., 203, 833 (1997).

    Article  Google Scholar 

  10. J. Du, F. Lin, H. Zhang and J. Chen, J. Turbomach., 132, 021017 (2010).

    Article  Google Scholar 

  11. J. Li, S. Geng, J. Du, H. Zhang and C. Nie, Aerosp. Sci. Technol., 85, 529 (2019).

    Article  Google Scholar 

  12. Z. Liu, Q. Zhao, X. Xiang, W. Zhao and X. Zhou, P. I. Mech. Eng A-J Pow., 235, 335 (2021).

    Google Scholar 

  13. J. Schreiber, B. Paoletti and X. Ottavy, Int. J. Rotating Mach., 2017, 7035870 (2017).

    Article  Google Scholar 

  14. X. Sun, Y. Ma, X. Liu and D. Sun, AIAA J., 54, 2361 (2016).

    Article  Google Scholar 

  15. Z. Sun, W. Zou and X. Zheng, Aerosp. Sci. Technol., 82, 628 (2018).

    Article  Google Scholar 

  16. M. Inoue, M. Kuroumaru, S. Yoshida, T. Minami, K. Yamada and M. Furukawa, Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, 5, 385 (2004).

    Article  Google Scholar 

  17. R. Mailach, I. Lehmann and K. T. Vogeler, J. Turbomach., 123, 453 (2001).

    Article  Google Scholar 

  18. W. Wang, C. Yang, C. Hu and H. Zhang, P. I. Mech. Eng. D-J Aut, 236, 621 (2022).

    Article  Google Scholar 

  19. H. Zhang, X. Deng, J. Chen and W. Huang, J. Therm. Sci., 14, 211 (2005).

    Article  Google Scholar 

  20. G. Pavesi, G. Ardizzon and G. Cavazzini, Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition. Fluids Engineering, 2005, 67 (2005).

    Google Scholar 

  21. A. Dazin, O. Coutier-Delgosha, P. Dupont, S. Coudert, G. Caignaert and G. Bois, J. Therm. Sci., 17, 368 (2008).

    Article  Google Scholar 

  22. N. Krause, K. Zähringer and E. Pap, Exp. Fluids, 39, 192 (2005).

    Article  Google Scholar 

  23. M. Sinha, A. Pinarbasi and J. Katz, J. Fluids Eng., 123, 490 (2001).

    Article  Google Scholar 

  24. X. Liu, D. Sun and X. Sun, J. Fluids Eng., 136, 031102 (2014).

    Article  Google Scholar 

  25. E. G. Feher, Energy Convers., 8, 85 (1968).

    Article  CAS  Google Scholar 

  26. V. Dostal, M. J. Driscoll, P. Hejzlar and N. E. Todreas, Proceedings of the 10th International Conference on Nuclear Engineering. 10th International Conference on Nuclear Engineering, 2, 567 (2002).

    Article  CAS  Google Scholar 

  27. Z. Liu, W. Luo, Q. Zhao, W. Zhao and J. Xu, Appl. Sci.-Basel, 8, 595 (2018).

    Article  Google Scholar 

  28. Z. Liu, P. Wang, X. Sun and B. Zhao, Energy, 240, 122792 (2022).

    Article  CAS  Google Scholar 

  29. Y. Zhu, Study on supercritical carbon dioxide centrifugal compressor, University of Chinese Academy of Sciences, China, doctoral dissertation (2020).

    Google Scholar 

  30. X. Li, Y. Zhao, H. Yao, M. Zhao and Z. Liu, Energies, 13, 5049 (2020).

    Article  Google Scholar 

  31. S. Saxena, R. Mallina, F. Moraga and D. Hofer, Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 9, V009T38A005 (2017).

    Google Scholar 

  32. F. R. Menter, M. Kuntz and R. Langtry, Heat Mass Transfer, 4, 625 (2003).

    Google Scholar 

  33. R. H. Aungier, Centrifugal compressors: A strategy for aerodynamic design and analysis, American Society of Mechanical Engineers Press, New York (1999).

    Google Scholar 

  34. J. Du, Y. Li, Z. Li, J. Li, Z. Wang and H. Zhang, Energy, 172, 618 (2019).

    Article  Google Scholar 

  35. J. D. Cameron, M. A. Bennington, M. H. Ross, S. C. Morris, J. Du, F. Lin and J. Chen, J. Turbomach., 135, 051005 (2013).

    Article  Google Scholar 

  36. A. Ghenaiet and S. Khalfallah, Aerosp. Sci. Technol., 88, 193 (2019).

    Article  Google Scholar 

  37. S. A. Khalid, A. S. Khalsa, I. A. Waitz, C. S. Tan, E. M. Greitzer, N. A. Cumpsty, J. J. Adamczyk and F. E. Marble, Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, 1, V001T01A047 (1998).

    Article  Google Scholar 

  38. Z. Li, X. Lu, G. Han, Y. Zhang, S. Zhao and J. Zhu, P I MECH ENG A-J POW., 234, 156 (2020).

    Google Scholar 

  39. J. Du, F. Lin, H. Zhang and J. Chen, J. Turbomach., 132, 021017 (2010).

    Article  Google Scholar 

  40. F. Holste and W. Neise, J. Sound Vib., 203, 641 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 52006217). The authors would like to thank Prof. Yuyan Jiang (now in Beijing Institute of Technology) and Dr. Yuming Zhu from the Institute of Engineering Thermophysics-Chinese Academy of Sciences for sharing their measurement data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Zhao.

Additional information

Declaration of Conflicting of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, P. & Zhao, B. Numerical investigation of the rotating instability uniqueness in a MWe scale supercritical carbon dioxide centrifugal compressor. Korean J. Chem. Eng. 39, 2935–2944 (2022). https://doi.org/10.1007/s11814-022-1213-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1213-1

Keywords

Navigation