Skip to main content
Log in

Full-annulus simulation of the surge inception in a transonic centrifugal compressor

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Full annulus simulations of the flow which develops in a transonic centrifugal compressor are performed at two stable operating points (peak efficiency and near surge) and during the path to surge. At stable conditions, the flow field properties are analyzed by comparisons with experimental data and numerical simulations using a phase lagged approach previously carried out. Regarding the stage overall performance, an excellent agreement is obtained between the numerical results (both with time lagged approach and full-annulus calculation) and the experiments. From the full-annulus simulations, the change in flow pattern from peak efficiency to surge is found to be perfectly similar to that obtained from the simulations using the time lagged approach. In particular, provided that the operating point is stable, the flow proves to be chorochronic.

The full-annulus simulations were continued after a unique small change in the throttle law applied at the exit of the numerical domain. The mass flow, pressure ratio and efficiency then significantly drop all the more the time progresses. The simulation becomes unstable and the surge inception well underway. The path to surge is found to be due to the enlargement of the boundary layer separation on the suction side of the diffuser vanes in accordance with the conclusions drawn from the chorochronic simulations and experiments. But as the time progresses, the flow loses its chorochronic character. Stall cells rotating at around 7% of the rotor speed develop and lead to surge in around 5 revolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Day I. J., The Fundamentals of Stall and Surge. Part I: Stall, Von Karman Institute for Fluid Dynamics, Lecture Series 2006-06, Advanced in Axial Compressor Aerodynamics, 2006, Brussels.

    Google Scholar 

  2. Van den Braembussche R., Stability and Range in Centrifugal Compressors, Von Karman Institute, Brussels, 1996.

    Google Scholar 

  3. Van den Braembussche R., Surge and Stall in Centrifugal Compressors, Von Karman Institute LS, Brussels, 1984.

  4. D. A. Fink, N. A. Cumpsty, E. M. Greitzer, Surge Dynamics in a Free-Spool Centrifugal Compressor System, Journal of Turbomach., vol. 114, No.2, p. 321–332, avr. 1992.

    Article  Google Scholar 

  5. Cumpsty N. A., Compressor Aerodynamics, Krieger Publishing Compagny, Malabar, FL, (ISBN: 1-5724-247-8), 2004.

    Google Scholar 

  6. Greitzer E. M., Surge and Rotating Stall in Axial Flow Compressors. Part I: Theoretical Compression System Model, Journal of Engineering for Power, vol. 98, pp. 190–198, 1976.

    Article  Google Scholar 

  7. Greitzer E. M., Surge and Rotating Stall in Axial Flow Compressors. Part II: Experimental Results and Comparison With Theory, Journal of Engineering for Power, vol. 98, pp. 199–217, 1976.

    Article  Google Scholar 

  8. Galindo J., Serrano J. R., Climent H., and Tiseira A., Experiments and modelling of surge in small centrifugal compressor for automotive engines, Experimental Thermal and Fluid Science, Vol. 32, No. 3, pp. 818–826, 2008.

  9. Gerolymos G. A. and Chapin V., Generalized Expression of Chorochronic Periodicity Blade Row Interaction, La Recherche Aérospatiale, vol. 5, 1991.

  10. Billonnet G., Fourmaux A., and Toussaint C., Evaluation of Two Competitive Approaches for Simulating the Time-Periodic Flow in an Axial Turbine Stage, Proceedings of the 4th European Turbomachinery Conference, Florence, Italy, 2001.

    Google Scholar 

  11. Bulot N., Ottavy X. and Trébinjac I., Unsteady Pressure Measurements in a High-Speed Centrifugal Compressor, Journal of Thermal Science, Science Press, Vol.19, pp. 1–8, 2010.

  12. Cambier L., Gazaix M., elsA: an Efficient Object- Oriented Solution to CFD Complexity, 40th AIAA Aerospace Science Meeting and Exhibit, Reno, USA, 2002.

    Google Scholar 

  13. Smith, B. R., Prediction of hypersonic shock wave turbulent boundary layer interactions with k-l two-equations turbulence model, 33th AIAA, Aerospace Sciences Meeting and Exhibition, Reno, USA, 1995.

    Book  Google Scholar 

  14. Rochuon, N., Analyse de l’écoulement tridimensionnel instationnaire dans un compresseur centrifuge à fort taux de pression, PhD thesis, Ecole Centrale de Lyon, Lyon, France, 2007.

    Google Scholar 

  15. Martinelli L., Calculation of Viscous Flows With a Multigrid Method, PhD Thesis, Priceton Univ., USA, 1987.

    Google Scholar 

  16. Yoon S. and Jameson A., An LU-SSOR scheme for the Euler and Navier-Stokes Equation. AIAA 25th Aerospace Science Meeting, Paper No.87-0600, Reno, NV, USA, 2002.

    Google Scholar 

  17. Gourdain N., High-Performance Computing of Gas Turbines Flows: Current and Future Trends, Habilitation à Diriger des Recherches, Ecole Centrale de Lyon, Lyon, France, 2011.

    Google Scholar 

  18. Wlassow F., Analyse Instationnaire Aérothermique d’un Etage de Turbine avec Transport de Points Chauds; Application à la Maîtrise des Performances des Aubages, PhD Thesis, Ecole Centrale de Lyon, Lyon, France, 2012.

    Google Scholar 

  19. Filola G., Le Pape M.C., Montagnac M., Numerical simulations around wing control surfaces, 24th ICAS Meeting, 2004.

    Google Scholar 

  20. Gourdain N., Simulation numérique des phénomènes de décollement tournant dans les compresseurs axiaux, PhD Thesis, Ecole Centrale de Lyon, Lyon, France, 2005.

    Google Scholar 

  21. Trébinjac I., Kulisa P., Bulot N., Rochuon N., Effect of the Unsteadiness on the Performance of a Transonic Centrifugal Compressor Stage, Journal of Turbomach., Vol. 131, Issue 4, 2009.

    Google Scholar 

  22. Trébinjac I., Bulot N., Buffaz N., Analysis of the flow in a transonic centrifugal compressor stage from choke to surge, 9th European Conference on Turbomachinery, Istanbul, 2011.

    Google Scholar 

  23. Trébinjac I., Bulot N., Ottavy X., Buffaz N., Surge inception in a transonic centrifugal compressor stage, paper GT2011-45116, ASME TurboExpo 2011. Vancouver, 2011.

    Book  Google Scholar 

  24. Pullan G., Young A. M., Day I. J., Greitzer E. M., and Spakovszky Z. S., Origins and Structure of Spike-Type Rotating Stall, Proceedings of ASME Turbo Expo 2012, Copenhagen, Denmark, paper GT2012-68707, 2012.

    Book  Google Scholar 

  25. Everitt J. N. and Spakovszky Z. S., An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffusers, Proceedings of the ASME Turbo Expo 2011. Vancouver, British Columbia, paper GT2011-46332, 2011.

    Book  Google Scholar 

  26. Weichert S. and Day I., Detailed Measurements of Spike Formation in an Axial Compressor, Proceedings of the ASME Turbo Expo 2012, Copenhagen, paper GT2012- 68627, 2012.

    Book  Google Scholar 

  27. Tyler, J. M. and Sofrin, T. G., Axial Flow Compressor Noise Studies, SAE Transaction 70, pp. 309–332, (1962).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trébinjac, I., Benichou, E. & Buffaz, N. Full-annulus simulation of the surge inception in a transonic centrifugal compressor. J. Therm. Sci. 24, 442–451 (2015). https://doi.org/10.1007/s11630-015-0807-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-015-0807-x

Keywords

Navigation