Skip to main content

Advertisement

Log in

Vapor-phase hydrogenolysis of glycerol to value-added 1,2-propanediol over copper-nickel bimetallic catalysts supported on activated carbon

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the production of biodiesel, a sustainable energy alternative to fossil fuel, surplus glycerol, is generated as a by-product. Valorization of excess glycerol is the most promising approach for rendering the biodiesel sector fiscally practical. Herein, copper and nickel monometallic and bimetallic catalysts supported over activated carbon were developed using the incipient wetness impregnation technique for the hydrogenolysis of vapor-phase glycerol to 1,2-propanediol (1,2-PDO) at a pressure of 0.75 MPa and temperature of 220 °C. The catalysts were characterized by Brunauer-Emmett-Teller, X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, X-ray photoelectron spectroscopy, and scanning electron microscopy analyses. The bimetallic catalysts afforded higher product yields than the monometallic catalysts did in glycerol hydrogenolysis. Cu-Ni(1 : 1)/AC gave the maximum yield of 1,2-PDO (87.3%), with high glycerol conversion (95.7%) under the previously mentioned reaction conditions, with a comparatively low molar ratio of hydrogen to glycerol (54.6). The strong copper-nickel synergy, smaller crystallite size, and high acid strength of Cu-Ni(1 : 1)/AC account for this superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renewable energy policy Network 21st Century steering committee. Renewables 2021: global status report. https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.

  2. OECD/FA, OECD-FAO Agricultural Outlook 2018–2027. Paris, Rome, OECD Publishing, FAO (2018).

    Google Scholar 

  3. M. Ayoub and A. Z. Abdullah, Renew. Sustain. Energy Rev., 16, 2671 (2012).

    Article  CAS  Google Scholar 

  4. F. Yang, M. A. Hanna and R. Sun, Biotechnol. Biofuels, 5, 1 (2012).

    Article  CAS  Google Scholar 

  5. S. Bagheri, N. M. Julkapli and W. A. Yehye, Renew. Sustain. Energy Rev., 41, 113 (2015).

    Article  CAS  Google Scholar 

  6. C. A. G. Quispe, C. J. R. Coronado and J. A. Carvalho, Renew. Sustain. Energy Rev., 27, 475 (2013).

    Article  CAS  Google Scholar 

  7. Y. Wang, J. Zhou and X. Guo, RSC Adv., 5, 74611 (2015).

    Article  CAS  Google Scholar 

  8. A. Brandner, K. Lehnert, A. Bienholz, M. Lucas and P. Claus, Top. Catal. 52, 278 (2009).

    Article  CAS  Google Scholar 

  9. A. Marinas, P. Bruijnincx, J. Ftouni, F. J. Urbano and C. Pinel, Catal. Today, 239, 31 (2015).

    Article  CAS  Google Scholar 

  10. T. Miyazawa, Y. Kusunoki, K. Kunimori and K. Tomishige, J. Catal., 240, 213 (2006).

    Article  CAS  Google Scholar 

  11. J. Hu, X. Liu, B. Wang, Y. Pei, M. Qiao and K. Fan, Chin. J. Catal., 33, 1266 (2012).

    Article  CAS  Google Scholar 

  12. C. Montassier, D. Giraud, J. Barbier, M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier and G. Perot, Heter. Catal. Fine Chem., Elsevier, 165 (1988).

  13. J. Feng, H. Fu, J. Wang, R. Li, H. Chen and X. Li, Catal. Commun., 9, 1458 (2008).

    Article  CAS  Google Scholar 

  14. S. Wang, K. Yin, Y. Zhang and H. Liu, ACS Catal., 3, 2112 (2013).

    Article  CAS  Google Scholar 

  15. Y. Nakagawa and K. Tomishige, Catal. Sci. Technol. 1, 179 (2011).

    Article  CAS  Google Scholar 

  16. C. Montassier, J. C. Menezo, L. C. Hoang, C. Renaud and J. Barbier, J. Mol. Catal. 70, 99 (1991).

    Article  CAS  Google Scholar 

  17. D. G. Lahr and B. H. Shanks, J. Catal., 232, 386 (2005).

    Article  CAS  Google Scholar 

  18. R. Mane, S. Patil, M. Shirai, S. Rayalu and C. Rode, Appl. Catal. B: Environ., 204, 134 (2017).

    Article  CAS  Google Scholar 

  19. I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori and K. Tomishige, Green Chem., 9, 582 (2007).

    Article  CAS  Google Scholar 

  20. Y. Nakagawa, Y. Shinmi, S. Koso and K. Tomishige, J. Catal., 272, 191 (2010).

    Article  CAS  Google Scholar 

  21. S. M. Pudi, P. Biswas, S. Kumar and B. Sarkar, J. Braz. Chem. Soc., 26, 1551 (2015).

    CAS  Google Scholar 

  22. C. T. Q. Mai and F. T. T. Ng, Catal. Today, 291, 195 (2017).

    Article  CAS  Google Scholar 

  23. H. Tan, M. N. Hedhill, Y. Wang, J. Zhang, K. Li, S. Sioud, Z. A. Al-Talla, M.H. Amad, T. Zhan, O.E. Tall and Y. Han, Catal. Sci. Technol., 3, 3360 (2013).

    Article  CAS  Google Scholar 

  24. J. Zheng, W. Zhu, C. Ma, Y. Hou, W. Zhang and Z. Wang, React. Kinet. Mech. Catal., 99, 455 (2010).

    Article  CAS  Google Scholar 

  25. S. K. Tanielyan, N. Marin, G. Alvez, R. Bhagat, B. Miryala, R. L. Augustine and S. R. Schmidt, Org. Process Res. Dev., 18, 1419 (2014).

    Article  CAS  Google Scholar 

  26. H. Zhao, L. Zheng, X. Li, P. Chen and Z. Hou, Catal. Today, 355, 84 (2020).

    Article  CAS  Google Scholar 

  27. Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou and X. Zheng, Bioresour. Technol., 101, 7088 (2010).

    Article  CAS  Google Scholar 

  28. Z. Wu, Y. Mao, M. Song, X. Yin and M. Zhang, Catal. Commun., 32, 52 (2013).

    Article  Google Scholar 

  29. S. M. Pudi, P. Biswas and S. Kumar, J. Chem. Technol. Biotechnol., 91, 2063 (2016).

    Article  CAS  Google Scholar 

  30. N. N. Pandhare, S. M. Pudi, P. Biswas and S. Sinha, Org. Process Res. Dev., 20, 1059 (2016).

    Article  CAS  Google Scholar 

  31. N. N. Pandhare, S. M. Pudi, P. Biswas and S. Sinha, J. Taiwan Inst. Chem. Eng., 61, 90 (2016).

    Article  CAS  Google Scholar 

  32. A. Bienholz, H. Hofmann and P. Claus, Appl. Catal. A: Gen., 391, 153 (2011).

    Article  CAS  Google Scholar 

  33. S. Sato, M. Akiyama, R. Takahashi, T. Hara, K. Inui and M. Yokota, Appl. Catal. A: Gen., 347, 186 (2008).

    Article  CAS  Google Scholar 

  34. D. Sun, Y. Yamada, S. Sato and W. Ueda, Appl. Catal. B: Environ., 193, 75 (2016).

    Article  CAS  Google Scholar 

  35. D. Sun, Y. Yamada and S. Sato, Appl. Catal. A: Gen., 475, 63 (2014).

    Article  CAS  Google Scholar 

  36. Z. Yuan, P. Wu, J. Gao, X. Lu, Z. Hou and X. Zheng, Catal. Lett., 130, 261 (2009).

    Article  CAS  Google Scholar 

  37. L. Zheng, S. Xia and Z. Hou, Appl. Clay Sci., 118, 68 (2015).

    Article  CAS  Google Scholar 

  38. Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou and X. Zheng, Appl. Catal. B: Environ., 101, 431 (2011).

    Article  CAS  Google Scholar 

  39. D. K. Pandey and P. Biswas, React. Chem. Eng., 5, 2221 (2020).

    Article  CAS  Google Scholar 

  40. L. Huang, Y. L. Zhu, H. Y. Zheng, Y. W. Li and Z. Y. Zeng, J. Chem. Technol. Biotechnol., 83, 1670 (2008).

    Article  CAS  Google Scholar 

  41. M. Akiyama, S. Sato, R. Takahashi, K. Inui and M. Yokota, Appl. Catal. A: Gen., 371, 60 (2009).

    Article  CAS  Google Scholar 

  42. S. Zhu, X. Gao, Y. Zhu, H. Zheng and Y. Li, J. Catal., 303, 70 (2013).

    Article  CAS  Google Scholar 

  43. J. Zhao, W. Yu, C. Chen, H. Miao, H. Ma and J. Xu, Catal. Lett., 134, 184 (2010).

    Article  CAS  Google Scholar 

  44. I. Jiménez-Morales, F. Vila, R. Mariscal and A. Jiménez-López, Appl. Catal. B: Environ., 117–118, 253 (2012).

    Article  Google Scholar 

  45. O. S. G. P. Soares, J. J. M. Órfão and M. F. R. Pereira, Appl. Catal. B: Environ., 91, 441 (2009).

    Article  CAS  Google Scholar 

  46. O. S. G. P. Soares, J. J. M. Órfão and M. F. R. Pereira, Catal. Lett., 126, 253 (2008).

    Article  CAS  Google Scholar 

  47. T. J. Bandosz, in Surface chemistry of carbon materials, P. Serp, J. L. Figueiredo Eds., Carbon Materials for Catalysis, J. Wiley & Sons, Hoboken, NJ (2009).

  48. F. Rodríguez-Reinoso, Carbon, 36, 159 (1988).

    Article  Google Scholar 

  49. E. G. Suarez, A. G. Ruiz, I. R. Ramos and A. Arcoya, Chem. Eng. J., 262, 326 (2015).

    Article  Google Scholar 

  50. M. Kruk and M. Jaroniec, Chem. Mater., 13, 3169 (2001).

    Article  CAS  Google Scholar 

  51. G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, Catal. Today, 41, 207 (1998).

    Article  CAS  Google Scholar 

  52. P. K. Vanama, A. Kumar, S. R. Ginjupalli and V. R. C. Komandur, Catal. Today, 250, 226 (2015).

    Article  CAS  Google Scholar 

  53. I. Gandarias, J. Requies, P. L. Arias, U. Armbruster and A. Martin, J. Catal., 290, 79 (2012).

    Article  CAS  Google Scholar 

  54. B. Zhang, H. You, F. Wang and Z. Yang, Catal. Commun., 88, 56 (2017).

    Article  CAS  Google Scholar 

  55. H. Tüysüz, E. L. Salabaş, E. Bill, H. Bongard, B. Spliethoff, C. W. Lehmann and F. Schüth, Chem. Mater., 24, 2493 (2012).

    Article  Google Scholar 

  56. R. Hierl, H. Knözinger and H. P. Urbach, J. Catal., 69, 475 (1981).

    Article  CAS  Google Scholar 

  57. R. Merabti, K. Bachari, D. Halliche, Z. Rassoul and A. Saadi, React. Kinet. Mech. Catal., 101, 195 (2010).

    Article  CAS  Google Scholar 

  58. O. Arbeláez, T. R. Reina, S. Ivanova, F. Bustamante, A. L. Villa, M. A. Centeno and J. A. Odriozola, Appl. Catal. A: Gen., 497, 1 (2015).

    Article  Google Scholar 

  59. N. Khandan, M. Kazemeini and M. Aghaziarati, Appl. Catal. A: Gen., 349, 6 (2008).

    Article  CAS  Google Scholar 

  60. Y. Feng, H. Yin, A. Wang, L. Shen, L. Yu and T. Jiang, Chem. Eng. J., 168, 403 (2011).

    Article  CAS  Google Scholar 

  61. S. A. Khromova, A. A. Smirnov, O. A. Bulavchenko, A. A. Saraev, V. V. Kaichev, S. I. Reshetnikov and V. A. Yakovlev, Appl. Catal. A: Gen., 470, 261 (2014).

    Article  CAS  Google Scholar 

  62. P. F. Barbieri, A. de Siervo, M. Carazzolle, R. Landers and G. G. Kleiman, J. Electron. Spectros. Relat. Phenomena, 135, 113 (2004).

    Article  CAS  Google Scholar 

  63. L. Huang, Y. Lv, S. Wu, P. Liu, W. Xiong, F. Hao and H. Luo, Appl. Catal. A: Gen., 577, 76 (2019).

    Article  CAS  Google Scholar 

  64. V. V. Kaichev, A. Y. Gladky, I. P. Prosvirin, A. A. Saraev, M. Hävecker, A. Knop-Gericke, R. Schlogl and V. I. Bukhtiyarov, Surf. Sci., 609, 113 (2013).

    Article  CAS  Google Scholar 

  65. S. P. Patil, J. V. Pande and R. B. Biniwale, Int. J. Hydrogen Energy, 38, 15233 (2013).

    Article  CAS  Google Scholar 

  66. R. B. Mane, A. Yamaguchi, A. Malawadkar, M. Shirai and C. V. Rode, RSC Adv., 3, 16499 (2013).

    Article  CAS  Google Scholar 

  67. M. Balaraju, V. Rekha, B. L. A. P. Devi, P. S. S. Prasad, R. B. N. Prasad and N. Lingaiah, Appl. Catal. A: Gen., 354, 82 (2009).

    Article  CAS  Google Scholar 

  68. R. B. Mane, A. M. Hengne, A. A. Ghalwadkar, S. Vijayanand, P. H. Mohite, H. S. Potdar and C. V. Rode, Catal. Lett., 135, 141 (2010).

    Article  CAS  Google Scholar 

  69. N. Riaz, F. K. Chong, B. K. Dutta, Z. B. Man, M. S. Khan and E. Nurlaela, Chem. Eng. J., 185–186, 108 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korean Ministry of Trade, Industry, and Energy (Project number: 20008490). The authors acknowledge the Department of Science and Technology (DST), Government of India for financial support under the FTYS scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hwan Oh.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1198_MOESM1_ESM.pdf

Vapor-phase hydrogenolysis of glycerol to value-added 1,2-propanediol over copper-nickel bimetallic catalysts supported on activated carbon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashif, M., Thangarasu, S., Oh, T.H. et al. Vapor-phase hydrogenolysis of glycerol to value-added 1,2-propanediol over copper-nickel bimetallic catalysts supported on activated carbon. Korean J. Chem. Eng. 39, 2652–2663 (2022). https://doi.org/10.1007/s11814-022-1198-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1198-9

Keywords

Navigation