Skip to main content
Log in

Synthesis and characterization of activated carbon-supported copper or nickel and their catalytic behavior towards benzaldehyde hydrogenation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Activated carbon-supported Ni and Cu catalysts were prepared by the conventional wetness impregnation method, and their catalytic activity for benzaldehyde hydrogenation/hydrogenolysis was tested at atmospheric pressure in the temperature range of 100–250 °C. Benzyl alcohol, toluene and methylcyclohexane were obtained through consecutive hydrogenation/hydrogenolysis reactions while benzene was formed by a parallel hydrogenolysis reaction. The obtained yields depended on the nature of the metal active phase and reaction conditions. The catalysts were characterized by ICP, BET, TEM and XRD techniques and their reducibilities were determined by hydrogen chemisorption. The factors governing the catalytic performances are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rylander PN (1985) Hydrogenation methods. Academic Press, London

    Google Scholar 

  2. Jenck J, Germain JE (1980) J Catal 65:141

    Article  CAS  Google Scholar 

  3. Nightingale D, Radford HD (1949) J Am Chem Soc 71:1089

    Article  Google Scholar 

  4. Carothers WH, Adams R (1925) J Am Chem Soc 47:1047

    Article  CAS  Google Scholar 

  5. Saadi A, Rassoul Z, Bettahar MM, Barrault J (1998) J Alger Chem Soc 8(2):224

    Google Scholar 

  6. Keane MA (1997) Appl Catal A Gen 118:261

    CAS  Google Scholar 

  7. Vannice MA, Poondi D (1997) J Catal 169:166

    Article  CAS  Google Scholar 

  8. Hubault R, Daage M, Bonnelle JP (1986) Appl Catal A Gen 22:231

    Article  Google Scholar 

  9. Haffad D, Kameswari U, Bettahar MM, Chambellan A, Lavalley JC (1997) J Catal 172:85

    Article  CAS  Google Scholar 

  10. Saadi A, Rassoul Z, Bettahar MM (2000) J Mol Catal A Chem 164:205

    Article  CAS  Google Scholar 

  11. Saadi A, Bettahar MM, Rassoul Z (2000) Stud Surf Sci Catal 130:2261

    Article  Google Scholar 

  12. Saadi A, Merabti R, Bettahar MM, Rassoul Z (2001) J Alger Chem Soc 11(2):231

    CAS  Google Scholar 

  13. Saadi A, Merabti R, Rassoul Z, Bettahar MM (2006) J Mol Catal A: Chem 253:82

    Article  CAS  Google Scholar 

  14. Koustall CA, Angeware PAJM, Ponec V (1993) J Catal 143:573

    Article  Google Scholar 

  15. March J (1997) In: Intern Stud (ed) Advanced organic chemistry. McGraw Hill, Tokyo

  16. Mao TF, Falconer JL (1990) J Catal 123:443

    Article  CAS  Google Scholar 

  17. Sen B, Falconer JL (1989) J Catal 117:404

    Article  CAS  Google Scholar 

  18. Sen B, Falconer JL (1988) J Catal 113:444

    Article  CAS  Google Scholar 

  19. Sen B, Falconer JL (1990) J Catal 123:45

    Google Scholar 

  20. Chen B, Falconer JL, Bailey KM, Sen B (1990) Appl Catal 66:283

    Article  CAS  Google Scholar 

  21. Radovic LR, Rodriguez-Reinoso F (1997) In: Thrower PA (ed) Chemistry and physics of carbon. Marcel Dekker, Inc., NY

    Google Scholar 

  22. Vilella IMJ, De Miguel SR, Scelza OA (2008) J Mol Catal A Chem 275:171

    Google Scholar 

  23. Bashkova S, Bagreev A, Bandosz TJ (2005) Catal Today 99:323

    Article  CAS  Google Scholar 

  24. Santiago M, Stuber F, Fortuny A, Fabregat A, Font J (2005) Carbon 43:2279

    Article  CAS  Google Scholar 

  25. Xue Y, Lu G, Guo Y, Guo Y, Wang Y, Zhang Z (2008) Appl Catal B Environ 79:262

    Article  CAS  Google Scholar 

  26. Rodriguez-Reinoso F (1995) In: Patrick JW (ed) Porosity in carbon: characterization and applications. Halsted Press, NY

    Google Scholar 

  27. Xiaoyun L, Ding M, Xinhe B, Chin A (2008) J Catal 29(3):259

    Google Scholar 

  28. Kang M, Bae YS, Lee CH (2005) Carbon 43(7):1512

    Article  CAS  Google Scholar 

  29. Rodriguez-Reinoso F (1998) Carbon 36(3):159

    Article  CAS  Google Scholar 

  30. Fraga MA, Mendes MJ, Jordao E (2002) J Mol Catal A Chem 179(1–2):243

    Article  CAS  Google Scholar 

  31. Wang SB, Zhu ZH, Coomes A, Haghseresht F, Lu GQ (2005) J Colloid Interface Sci 284:440

    Article  CAS  Google Scholar 

  32. Garcia T, Murillo R, Cazorla-Amoros D, Mastral AM, Linares-solano A (2004) Carbon 42:1683

    Article  CAS  Google Scholar 

  33. Bagreev A, Adib F, Bandosz TJ (2001) Carbon 39:1897

    Article  CAS  Google Scholar 

  34. Fouilloux P (1988) 1st Congress of heterog catal and fine chem (HCFC). Poitiers, France, p 123

  35. Barrett EP, Joyner LG, Halenda PH (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  36. Valange S, Derouault A, Barrault J, Gabelica Z (2005) J Mol Catal A Chem 228:255

    Article  CAS  Google Scholar 

  37. Guiner A (1994) X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Dover Publications, NY

    Google Scholar 

  38. Stankova NB, Khristova MS, Mehandjiev DR (2001) J Colloid Interface Sci 24:439

    Article  CAS  Google Scholar 

  39. Valange S, Barrault J, Derouault A, Gabelica Z (2001) Microporous Mesoporous Mater 44:211

    Article  Google Scholar 

  40. Jones A, McNicol BD (1986) Temperature programmed-reduction for solid materials characterization. Dekker, NY

    Google Scholar 

  41. Hartmann M, Racouchot S, Bischeo C (1999) Microporous Mesoporous Mater 27:163

    Google Scholar 

  42. Bond GC, Namijo SN, Wakeman JS (1990) J Mol Catal 64(3):305

    Google Scholar 

  43. Wojcieszak R, Jasik A, Monteverdi S, Ziolek M, Bettahar MM (2006) J Mol Catal A Chem 256:225

    Article  CAS  Google Scholar 

  44. Wojcieszak R, Zielinski M, Monteverdi S, Bettahar MM (2006) J Colloid Interface Sci 299:238

    Article  CAS  Google Scholar 

  45. Tores GC, Jablonski EL, Baronetti GT, Castro AA, De Miguel SR, Scelza OA, Blanco MD, Pena Jimenez MA, Fierro JLG (1997) Appl Catal A Gen 161:213

    Article  Google Scholar 

  46. Zielinski J (1982) J Catal 76:157

    Article  CAS  Google Scholar 

  47. Molina R, Poncelet G (1998) J Catal 173:257

    Article  CAS  Google Scholar 

  48. Siegel S (1973) J Catal 30:139

    Article  CAS  Google Scholar 

  49. Jalowiecki L, Wrobel G, Daage M, Bonnelle JP (1987) Appl Catal A Gen 107:375

    CAS  Google Scholar 

  50. Bechara R, Wrobel G, Daage M, Bonnelle JP (1985) Appl Catal A Gen 16:15

    Article  CAS  Google Scholar 

  51. Vannice MA (1997) Top Catal 4:241

    Article  Google Scholar 

  52. Merabti R, Saadi A, Rassoul Z, Bettahar MM (2006) J Alger Chem Soc 16(1):66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merabti, R., Bachari, K., Halliche, D. et al. Synthesis and characterization of activated carbon-supported copper or nickel and their catalytic behavior towards benzaldehyde hydrogenation. Reac Kinet Mech Cat 101, 195–208 (2010). https://doi.org/10.1007/s11144-010-0215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0215-x

Keywords

Navigation