Skip to main content
Log in

Bubble behavior and nucleation site density in subcooled flow boiling using a novel method for simulating the microstructure of surface roughness

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The wall boiling model in the current research is used to predict the bubble dynamics treatment in flow boiling in a vertical pipe. A random surface roughness is developed for simulating the surface roughness effects in sub-cooled flow boiling as a novel method. This novel method is called direct roughness simulation (DRS). The DRS results are compared to the smooth surface (SS) and surface roughness model (SRM). The SRM is the traditional way of simulating surface roughness. The finite volume methods and Euler-Euler are applied to investigate subcooled flow boiling. The turbulence stresses are simulated by the k-ε model. The surface roughness effect on bubble dynamics for flow boiling is investigated numerically. According to the numerical simulations, nucleation site density is only increased by augmentation of heat flux. In contrast, increasing surface roughness, pressure, mass flux, and subcooled temperature cause a drop in nucleation site density. The bubble detachment waiting time and bubble departure diameter increase with the rise in pressure; however, by increasing other boundary conditions, these two parameters decrease. Results show that the reduction in the nucleation site density at outlet was 28.05% for the DRS and 25.5% for the SRM compared to the SS. The bubble detachment frequency at oulet 2.04% decreases when using the SRM and 6.5% increases when using the DRS. Compared to the SS; the bubble departure diameter at outlet 4.3% increases when using the SRM and 11.8% decreases when using the DRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bozorgnezhad, M. Shams, G. Ahmadi, H. Kanani and M. Hasheminasab, The experimental study of water accumulation in PEMFC cathode channel (2015).

  2. M. Hasheminasab, A. Bozorgnezhad, M. Shams, G. Ahmadi and H. Kanani, Simultaneous investigation of PEMFC performance and water content at different flow rates and relative humidities (2014).

  3. A. Bozorgnezhad, M. Shams, H. Kanani and M. Hasheminasab, J. Dispers. Sci. Technol., 36, 1190 (2015).

    Article  CAS  Google Scholar 

  4. T. Hibiki and M. Ishii, J. Comput. Multiph. Flows, 1, 1 (2009).

    Article  CAS  Google Scholar 

  5. J. F. F. Klausner, R. Mei, D. M. M. Bernhard and L. Z. Z. Zeng, Int. J. Heat Mass Transf., 36, 651 (1993).

    Article  CAS  Google Scholar 

  6. G. E. Thorncroft, J. F. Klausnera and R. Mei, Int. J. Heat Mass Transf., 41, 3857 (1998).

    Article  CAS  Google Scholar 

  7. C. S. Brooks, B. Ozar, T. Hibiki and M. Ishii, Nucl. Eng. Des., 268, 152 (2014).

    Article  CAS  Google Scholar 

  8. H. Alimoradi, M. Shams, N. Ashgriz and A. Bozorgnezhad, Case Stud. Therm. Eng., 24, 100829 (2021).

    Article  Google Scholar 

  9. D. Prabhudharwadkar, M. A. Lopez de Bertodano, J. Buchanan, Jr. and A. Vaidheeswaran, In International Heat Transfer Conference, 49361, 655 (2010).

    Google Scholar 

  10. M. Ishii and T. Hibiki, Thermo-fluid dynamics of two-phase flow, Springer Science & Business Media (2010).

  11. M. Jakob and SP. Kezios, Heat Transfer., 2 (1949).

  12. B. B. Mikic, W. M. Rohsenow and P. Griffith, Int. J. Heat Mass Transf., 13, 657 (1970).

    Article  Google Scholar 

  13. Y. Y. Hsu and R.W. Graham, Transport processes in boiling and two-phase systems, including near-critical fluids, Hemisphere Pub. Corp., Washington (1976).

    Google Scholar 

  14. R. F. Gaertner and J. W. Westwater, Chem. Eng. Prog., 56, 39 (1960).

    Google Scholar 

  15. S. R. R. Yang and R. H. H. Kim, Int. J. Heat Mass Transf., 31, 1127 (1988).

    Article  CAS  Google Scholar 

  16. G. Kocamustafaogullari and M. Ishii, Int. J. Heat Mass Transf., 26, 1377 (1983).

    Article  Google Scholar 

  17. T. Hibiki and M. Ishii, Int. J. Heat Mass Transf., 46, 2587 (2003).

    Article  CAS  Google Scholar 

  18. N. Basu, G. R. Warrier and V. K. Dhir, J. Heat Transfer, 124, 717 (2002).

    Article  CAS  Google Scholar 

  19. C. S. Brooks, N. Silin, T. Hibiki and M. Ishii, J. Heat Transfer, 5, 137 (2015).

    Google Scholar 

  20. A. Parahovnik and Y. Peles, Int. J. Heat Mass Transf., 183, 122191 (2022).

    Article  CAS  Google Scholar 

  21. J. Bhati and S. Paruya, Nucl. Eng. Des., 371, 110945 (2021).

    Article  CAS  Google Scholar 

  22. A. Mukherjee, D. N. Basu and P. K. Mondal, Int. J. Multiph. Flow, 148, 103923 (2022).

    Article  CAS  Google Scholar 

  23. A. Khoshnevis, A. Sarchami and N. Ashgriz, Appl. Therm. Eng., 135, 280 (2018).

    Article  CAS  Google Scholar 

  24. H. Alimoradi and M. Shams, Appl. Therm. Eng., 111, 1039 (2017).

    Article  Google Scholar 

  25. H. Alimoradi, M. Shams and Z. Valizadeh, Modares Mech. Eng., 16, 545 (2017).

    Google Scholar 

  26. M. H. Zolfagharnasab, M. Salimi, H. Zolfagharnasab, H. Alimoradi, M. Shams and C. Aghanajafi, Powder Technol., 380, 1 (2021).

    Article  CAS  Google Scholar 

  27. H. Alimoradi and M. Shams, Modares Mech. Eng., 19, 1613 (2019).

    Google Scholar 

  28. M. Roodbari, H. Alimoradi, M. Shams and C. Aghanajafi, J. Therm. Anal. Calorim., 147(4), 3283 (2022).

    Article  CAS  Google Scholar 

  29. H. Alimoradi, S. Zaboli and M. Shams, Korean J. Chem. Eng., 39, 69 (2022).

    Article  CAS  Google Scholar 

  30. S. Zaboli, H. Alimoradi and M. Shams, J. Therm. Anal. Calorim., 147, 1 (2022).

    Google Scholar 

  31. A. Chen, T. F. Lin, H. M. Ali and W.-M. Yan, Int. J. Heat Mass Transf., 157, 119974 (2020).

    Article  CAS  Google Scholar 

  32. H. I. Mohammed and D. Giddings, Int. J. Therm. Sci., 146, 106099 (2019).

    Article  CAS  Google Scholar 

  33. H. I. Mohammed, D. Giddings and G. S. Walker, Int. J. Heat Mass Transf., 125, 218 (2018).

    Article  CAS  Google Scholar 

  34. H. I. Mohammed, D. Giddings and G. S. Walker, Int. J. Heat Mass Transf., 130, 710 (2019).

    Article  CAS  Google Scholar 

  35. H. I. Mohammed, D. Giddings and G. S. Walker, Int. J. Heat Mass Transf., 134, 1159 (2019).

    Article  CAS  Google Scholar 

  36. M. Lemmert and J. M. Chawla, Heat Transf. Boil., 237, 247 (1977).

    Google Scholar 

  37. R. Cole, AIChE J., 6, 533 (1960).

    Article  CAS  Google Scholar 

  38. V. I. Tolubinsky and D. M. Kostanchuk, in International Heat Transfer Conference, 23, 4 (1970).

    Google Scholar 

  39. N. Kurul and Z. Michael, Podowski. In International Heat Transfer Conference Digital Library (1990).

  40. E. Krepper and R. Rzehak, Nucl. Eng. Des., 241, 3851 (2011).

    Article  CAS  Google Scholar 

  41. E. Krepper, R. Rzehak, C. Lifante and T. Frank, Nucl. Eng. Des., 255, 330 (2013).

    Article  CAS  Google Scholar 

  42. E. Krepper, B. Končar and Y. Egorov, Nucl. Eng. Des., 237, 716 (2007).

    Article  CAS  Google Scholar 

  43. G. G. Bartolomei, V. G. Brantov, Y. S. Molochnikov, Y. V. Kharitonov, V. A. Solodkii, G. N. Batashova and V. N. Mikjailov, Therm. Eng., 29, 132 (1982).

    Google Scholar 

  44. F. M. White and J. Majdalani, Viscous fluid flow, vol. 3. McGraw-Hill New York (2006).

    Google Scholar 

  45. H. Schlichting and K. Gersten, Boundary-layer theory, Springer (2016).

  46. H. Setoodeh, A. Keshavarz, A. Ghasemian and A. Nasouhi, Appl. Therm. Eng., 90, 384 (2015).

    Article  CAS  Google Scholar 

  47. D. Sarker, W. Ding, C. Schneider and U. Hampel, Int. J. Heat Mass Transf., 142, 118481 (2019).

    Article  Google Scholar 

  48. J. P. McHale and S. V Garimella, Exp. Therm. Fluid Sci., 44, 439 (2013).

    Article  CAS  Google Scholar 

  49. P. Zhou, R. Huang, S. Huang, Y. Zhang and X. Rao, Int. J. Heat Mass Transf., 149, 119105 (2020).

    Article  Google Scholar 

  50. T. Ren, Z. Zhu, M. Yan, J. Shi and C. Yan, Int. J. Heat Mass Transf., 144, 118670 (2019).

    Article  CAS  Google Scholar 

  51. R. Sugrue, J. Buongiorno and T. McKrell, Nucl. Eng. Des., 279, 182 (2014).

    Article  CAS  Google Scholar 

  52. Y. L. Rousselet, Interacting effects of inertia and gravity on bubble dynamics, University of California, Los Angeles (2014).

    Google Scholar 

  53. Y. M. Lie and T. F. Lin, Int. J. Heat Mass Transf., 49, 2077 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrzad Shams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimoradi, H., Shams, M. & Ashgriz, N. Bubble behavior and nucleation site density in subcooled flow boiling using a novel method for simulating the microstructure of surface roughness. Korean J. Chem. Eng. 39, 2945–2958 (2022). https://doi.org/10.1007/s11814-022-1163-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1163-7

Keywords

Navigation