Skip to main content

Advertisement

Log in

Optimal strategies for supercritical gas antisolvent (GAS) coprecipitation of pyrazinamide/PVP particles via response surface methodology

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper concerns optimization and experimental validation of coprecipitation process parameters for preparing particles of Pyrazinamide and Polyvinylpyrrolidone using gas anti-solvent supercritical method. Mixtures of organic solvents (acetone and ethanol) were selected with various combinations of the drug and the polymer. The central composite design (CCD) was adopted to explore the effect of temperature, pressure, antisolvent addition rate, polymer fraction, and ethanol fraction on particle size distribution (PSD) and solubility. The strong likelihood models were developed for all the responses using Design-Expert software. Polymer fraction was the most important (p<0.0001) factor influencing PSD, while pressure and interaction between temperature and polymer fraction significantly affected solubility. The optimal condition was specified at temperature of 50 °C, pressure of 120 bar, antisolvent rate of 16 bar/min, polymer fraction of 30%, and ethanol fraction of 50%. The model was then validated experimentally under the optimal condition and compared with pure PZA and particles obtained from the physical mixture. According to DLS, XRD, FTIR, and FESEM analyses, the crystallinity of PZA-PVP particles was reduced in optimum conditions, leading to higher solubility. Also, the results suggest that it is feasible to produce coprecipitated particles with narrower size distribution by optimized GAS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Silva, B. Vieira, F. Carmo, L. Amaral, L. Silva, C. Escudini, M. Lopes, V. Sousa, H. Castro, F. Veiga, C. Rodrigues, A. Ribeiro and L. Cabral, British J. Pharm. Res., 4, 1781 (2014).

    Article  Google Scholar 

  2. D. Maher, P. Chaulet, S. Spinaci and A. Harries, Treatment of tuberculosis: guidelines for national programmes, Second edition, 2 ed., World Health Organization, Geneva (1997).

    Google Scholar 

  3. R. Varma, T. S. Kumar, B. Prasanthi and J. V. Ratna, Indian J. Pharm. Sci., 77, 258 (2015).

    Article  CAS  Google Scholar 

  4. G. Baaklini, V. Dupray and G. Coquerel, Int. J. Pharm., 479, 163 (2015).

    Article  CAS  Google Scholar 

  5. U. S. Kestur and L. S. Taylor, CrystEngComm, 12, 2390 (2010).

    Article  CAS  Google Scholar 

  6. B. C. Hancock and M. Parks, Pharm. Res., 17, 397 (2000).

    Article  CAS  Google Scholar 

  7. V. Prosapio, I. De Marco and E. Reverchon, Chem. Eng. J., 292, 264 (2016).

    Article  CAS  Google Scholar 

  8. L. Padrela, J. Zeglinski and K. M. Ryan, Cryst. Growth Des., 17, 4544 (2017).

    Article  CAS  Google Scholar 

  9. V. Prosapio, I. De Marco and E. Reverchon, J. Supercrit. Fluids, 138, 247 (2018).

    Article  CAS  Google Scholar 

  10. K. Moribe, Y. Tozuka and K. Yamamoto, Adv. Drug Deliv. Rev., 60, 328 (2008).

    Article  CAS  Google Scholar 

  11. I. Pasquali, R. Bettini and F. Giordano, Adv. Drug Deliv. Rev., 60, 399 (2008).

    Article  CAS  Google Scholar 

  12. F. Dehghani and N. R. Foster, Curr. Opin. Solid State Mater. Sci., 7, 363 (2003).

    Article  CAS  Google Scholar 

  13. M. Amani, N. Saadati Ardestani and N. Y. Majd, J. CO2 Utilization, 46, 101465 (2021).

    Article  CAS  Google Scholar 

  14. I. Garay, A. Pocheville and L. Madariaga, Powder Technol., 197, 211 (2010).

    Article  CAS  Google Scholar 

  15. S. Varona, J. Fernández, M. Rossmann and A. Braeuer, J. Chem. Eng. Data, 58, 1054 (2013).

    Article  CAS  Google Scholar 

  16. A. Montes, M. D. Gordillo, C. Pereyra and E. J. Martínez de la Ossa, J. Supercrit. Fluids, 60, 75 (2011).

    Article  CAS  Google Scholar 

  17. I. De Marco, M. Rossmann, V. Prosapio, E. Reverchon and A. Braeuer, Chem. Eng. J., 273, 344 (2015).

    Article  CAS  Google Scholar 

  18. N. Foster, R. Mammucari, F. Dehghani, A. Barrett, K. Bezanehtak, E. Coen, G. Combes, L. Meure, A. Ng, H. L. Regtop and A. Tandya, Ind. Eng. Chem. Res., 42, 6476 (2003).

    Article  CAS  Google Scholar 

  19. A. Gokhale, B. Khusid, R. N. Dave and R. Pfeffer, J. Supercrit. Fluids, 43, 341 (2007).

    Article  CAS  Google Scholar 

  20. P. Franco, E. Reverchon and I. De Marco, Powder Technol., 340, 1 (2018).

    Article  CAS  Google Scholar 

  21. A. Homayouni, F. Sadeghi, J. Varshosaz, H.A. Garekani and A. Nokhodchi, Eur. J. Pharm. Biopharm., 88, 261 (2014).

    Article  CAS  Google Scholar 

  22. G. Ozkan, P. Franco, E. Capanoglu and I. De Marco, Chem. Eng. Process. — Process Intensification, 146, 107689 (2019).

    Article  CAS  Google Scholar 

  23. İ. N. Uzun, O. Sipahigil and S. Dinçer, J. Supercrit. Fluids, 55, 1059 (2011).

    Article  CAS  Google Scholar 

  24. F. Fusaro, M. Mazzotti and G. Muhrer, Cryst. Growth Des., 4, 881 (2004).

    Article  CAS  Google Scholar 

  25. N. Esfandiari and S. M. Ghoreishi, J. Supercrit. Fluids, 84, 205 (2013).

    Article  CAS  Google Scholar 

  26. C. A. Ober, S. E. Montgomery and R. B. Gupta, Powder Technol., 236, 122 (2013).

    Article  CAS  Google Scholar 

  27. D. Jafari, I. Yarnezhad, S. M. Nowee and S. H. N. Baghban, Ind. Eng. Chem. Res., 54, 3685 (2015).

    Article  CAS  Google Scholar 

  28. A. Shirafkan, S. M. Nowee and H. Kamali, J. Supercrit. Fluids, 178, 105386 (2021).

    Article  CAS  Google Scholar 

  29. J. B. Ngilirabanga, M. Aucamp, P. Pires Rosa and H. Samsodien, Front. Chem., 8, 1051 (2020).

    Article  Google Scholar 

  30. D. Medarević, J. Djuriš, S. Ibrić, M. Mitrić and K. Kachrimanis, Int. J. Pharm., 540, 150 (2018).

    Article  Google Scholar 

  31. Z. Zhang, Q. Li, B. Guo, S. Zhang, S. Zhang and D. Hu, Sci. Rep., 10, 11187 (2020).

    Article  CAS  Google Scholar 

  32. R. Campardelli, E. Reverchon and I. De Marco, J. Supercrit. Fluids, 143, 321 (2019).

    Article  CAS  Google Scholar 

  33. V. Prosapio, E. Reverchon and I. De Marco, J. CO2 Utilization, 19, 230 (2017).

    Article  CAS  Google Scholar 

  34. K. Chhouk, Wahyudiono, H. Kanda, S.-I. Kawasaki and M. Goto, Front. Chem. Sci. Eng., 12, 184 (2018).

    Article  CAS  Google Scholar 

  35. W. J. Gun and A. F. Routh, Langmuir, 29, 12541 (2013).

    Article  CAS  Google Scholar 

  36. S. Cherukuvada, R. Thakuria and A. Nangia, Cryst. Growth Des., 10, 3931 (2010).

    Article  CAS  Google Scholar 

  37. A. M. Barrett, F. Dehghani and N. R. Foster, Pharm. Res., 25, 1274 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mostafa Nowee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirafkan, A., Nowee, S.M. & Kamali, H. Optimal strategies for supercritical gas antisolvent (GAS) coprecipitation of pyrazinamide/PVP particles via response surface methodology. Korean J. Chem. Eng. 39, 2307–2317 (2022). https://doi.org/10.1007/s11814-022-1142-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1142-z

Keywords

Navigation