Skip to main content
Log in

Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

CF4 plasma treatment is performed on commercial TiO2 to improve the photocatalytic efficiency. The CF4 plasma treatment is a facile and fast method for simultaneous introduction of carbon and fluorine atoms onto TiO2. Photodegradation of rhodamine B, methyl orange, and methylene blue is carried out under solar light irradiation to determine its CF4 plasma treatment effect. The dye removal of commercial TiO2 to rhodamine B, methyl orange, and methylene blue is 60.0, 18.9, and 49.2%, respectively, whereas TiO2 treated with CF4 plasma for 50 min is 93.5, 71.0, and 88.6% for rhodamine B, methyl orange, and methylene blue, respectively. In addition, the photodegradation rate constants of TiO2 treated with CF4 plasma for 50 min were 0.0135, 0.0083, and 0.0129 min−1 for rhodamine B, methyl orange, and methylene blue, respectively, which are up to 7.5 times higher than that of untreated TiO2 (0.0049, 0.0011, and 0.0039 min−1). This improvement is attributed to the increase in oxygen vacancies by the introduction of carbon atoms into TiO2 using CF4 plasma treatment. In addition, the F ions physically adsorbed to the TiO2 surface promote the formation of hydroxyl free radicals, enabling effective decomposition of various dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, S. Huo, P. Cheng, P. Peng and R. Zhang, J. Clean. Prod., 268, 121725 (2020).

    Article  CAS  Google Scholar 

  2. S. MiarAlipour, D. Friedmann, J. Scott and R. Amal, J. Hazard. Mater., 341, 404 (2018).

    Article  Google Scholar 

  3. H.-R. An, S. Y. Park, J. Y. Huh, H. Kim, Y.-C. Lee, Y. B. Lee, Y. C. Hong and H. U. Lee, Appl. Catal. B., 211, 126 (2017).

    Article  CAS  Google Scholar 

  4. Y. Ling, J. Li, J. Wu, H. Liu, X. Mao, Y. Qi, Q. Ma, Q. Liu, Z. Qiao and W. Chu, J. Chem. Eng., 39, 343 (2022).

    CAS  Google Scholar 

  5. T. S. Kazeem, M. Zubair, M. Daud, N. D. Mu’azu and M. A. AlHarthi, J. Chem. Eng., 36, 1057 (2019).

    CAS  Google Scholar 

  6. K. Hossienzadeh, A. Maleki, H. Daraei, M. Safari, R. Pawar and S. M. Lee, J. Chem. Eng., 36, 1360 (2019).

    CAS  Google Scholar 

  7. A. Sridhar, M. Ponnuchamy, A. Kapoor and S. Prabhakar, J. Hazard. Mater., 424, 127432 (2022).

    Article  CAS  Google Scholar 

  8. D. H. Kang, H. Jo, M.-J. Jung, K. H. Kim and Y.-S. Lee, Carbon Lett., 27, 64 (2018).

    Google Scholar 

  9. J. S. Lee, K. H. You and C. B. Park, Adv. Mater., 24, 1084 (2012).

    Article  CAS  Google Scholar 

  10. M. Baruah, S. L. Ezung, A. Supong, P. C. Bhomick, S. Kumar and D. Sinha, J. Chem. Eng., 38, 1277 (2021).

    CAS  Google Scholar 

  11. M. Zafar, J.-Y. Yun and D.-H. Kim, J. Chem. Eng., 35, 567 (2018).

    CAS  Google Scholar 

  12. J.-Y. Jung, J. H. Kim and Y.-S. Lee, J. Nanosci. Nanotechnol., 16, 4498 (2016).

    Article  CAS  Google Scholar 

  13. M.-J. Jung, Y. Kim and Y.-S. Lee, J. Ind. Eng. Chem., 47, 187 (2017).

    Article  CAS  Google Scholar 

  14. J.-H. Kim, F. Nishimura, S. Yonezawa and M. Takashima, J. Fluor. Chem., 144, 165 (2012).

    Article  CAS  Google Scholar 

  15. F. Teng, G. Zhang, Y. Wang, C. Gao, L. Chen, P. Zhang, Z. Zhang and E. Xie, Appl. Surf. Sci., 320, 703 (2014).

    Article  CAS  Google Scholar 

  16. G.-w. Cui, W-l. Wang, M.-y. Ma, M. Zhang, X.-y. Xia, F.-y. Han, X.-f. Shi, Y.-q. Zhao, Y.-B. Dong and B. Tang, Chem. Comm., 49, 6415 (2013).

    Article  CAS  Google Scholar 

  17. Y.-T. Lin, C.-H. Weng, Y.-H. Lin, C.-C. Shiesh and F.-Y. Chen, Sep. Purif. Technol., 116, 114 (2013).

    Article  CAS  Google Scholar 

  18. D.-G. Huang, S.-J. Liao, J.-M. Liu, Z. Dang and L. Petrik, J. Photochem. Photobiol. A: Chem., 184, 282 (2006).

    Article  CAS  Google Scholar 

  19. R. Lee, C. Lim, M.-J. Kim and Y.-S. Lee, Appl. Chem. Eng., 32, 55 (2021).

    CAS  Google Scholar 

  20. E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi and Y.-S. Lee, Appl. Chem. Eng., 30, 160, (2019).

    CAS  Google Scholar 

  21. Y. Park, W. Kim, D. N. Monllor-Satoca, T. Tachikawa, T. Majima and W. Choi, J. Phys. Chem. Lett., 4, 189 (2013).

    Article  CAS  Google Scholar 

  22. F. Pellegrino, L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V.-D. Hodoroaba and V. Maurino, Appl. Catal. B, 216, 80 (2017).

    Article  CAS  Google Scholar 

  23. Y. He, Q. Yan, X. Liu, M. Dong and J. Yang, J. Photoch. Photobio. A, 393, 112400 (2020).

    Article  CAS  Google Scholar 

  24. M. H. Lee, H. Y. Kim, J. Kim, J. T. Han, Y.-S. Lee and J. S. Woo, Carbon Lett., 30, 345 (2020).

    Article  Google Scholar 

  25. D.-H. Lee, B. Swain, D. Shin, N.-K. Ahn, J.-R. Park and K.-S. Park, Mater. Res. Bull., 109, 227 (2019).

    Article  CAS  Google Scholar 

  26. B. Bharti, S. Kumar, H.-N. Lee and R. Kumar, Sci. Rep., 6, 1 (2016).

    Article  CAS  Google Scholar 

  27. N. Mahdi, P. Kumar, A. Goswami, B. Perdicakis, K. Shankar and M. Sadrzadeh, Nanomaterials, 9, 1186 (2019).

    Article  CAS  Google Scholar 

  28. S. Kaur and V. Singh, J. Hazard. Mater., 141, 230 (2007).

    Article  CAS  Google Scholar 

  29. Y. Zhang, Z. Chen and Z. Lu, Nanomaterials, 8, 261 (2018).

    Article  CAS  Google Scholar 

  30. T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T. Weber, P. Fornasiero and C. B. Murray, J. Am. Chem. Soc., 134, 6751 (2012).

    Article  CAS  Google Scholar 

  31. J. Li, M. Zhang, Z. Guan, Q. Li, C. He and J. Yang, Appl. Catal. B, 206, 300 (2017).

    Article  CAS  Google Scholar 

  32. Y. He, Q. Yan, X. Liu, M. Dong and J. Yang, J. Photoch. Photobio. A, 393, 112400 (2020).

    Article  CAS  Google Scholar 

  33. H.-Y. Kim and Y.-W. Ju, J. Chem. Eng., 38, 1522 (2021).

    CAS  Google Scholar 

  34. B. Bharti, H. Li, D. Liu, H. Kumar, V. Manikandan, X. Zha and F. Ouyang, Appl. Phys. A, 126, 1, (2020).

    Article  Google Scholar 

  35. Y. Sang, H. Liu and A. Umar, Chem. Pub. Soc. Europe., 7, 559 (2015).

    CAS  Google Scholar 

  36. S.-y. Yang, Y.-y. Chen, J.-g. Zheng and Y.-j. Cui, J. Environ. Sci., 19, 86 (2007).

    Article  CAS  Google Scholar 

  37. N. Yao, J. Huang, K. Fu, X. Deng, M. Ding, S. Zhang, X. Xu and L. Li, Sci. Rep., 6, 31123 (2016).

    Article  CAS  Google Scholar 

  38. Y. Chen, Y. Wang, W. Li, Q. Yang, Q. Hou, L. Wei, L. Liu, F. Huang and M. Ju, Appl. Catal. B, 210, 352 (2017).

    Article  CAS  Google Scholar 

  39. H. U. Lee, Y.-C. Lee, S. C. Lee, S. Y. Park, B. Son, J. W. Lee, C.-H. Lim, C.-J. Choi, M.-H. Choi and S. Y. Lee, Chem. Eng. J., 254, 268 (2014).

    Article  CAS  Google Scholar 

  40. C. Minero, G. Mariella, V. Maurino and E. Pelizzetti, Langmuir, 16, 2632 (2000).

    Article  CAS  Google Scholar 

  41. K. Lv, B. Cheng, J. Yu and G. Liu, Phys. Chem., 14, 5349 (2012).

    CAS  Google Scholar 

  42. J. Liu, F. Xie, R. Li, T. Li, Z. Jia, Y. Wang, Y. Wang, X. Zhang and C. Fan, Mater. Sci. Semicond. Process., 97, 1 (2019).

    Article  CAS  Google Scholar 

  43. Q. Liu, F. Wang, H. Lin, Y. Xie, N. Tong, J. Lin, X. Zhang, Z. Zhang and X. Wang, Catal. Sci. Technol., 8, 4399 (2018).

    Article  CAS  Google Scholar 

  44. Y. Zhang, Z. Chen and Z. Lu, Nanomaterials, 8, 261 (2018).

    Article  CAS  Google Scholar 

  45. C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk and W. F. Maier, Appl. Catal. B, 32, 215 (2001).

    Article  CAS  Google Scholar 

  46. B. C. Bai, J. S. Im, J. G. Kim and Y.-S. Lee, Appl. Chem. Eng., 21, 29 (2010).

    CAS  Google Scholar 

  47. H. W. Jeon, M. G. Jeong, B. Y. An, M. S. Hong, S. H. Seong and G. D. Lee, Clean Technol., 26, 311 (2020)

    Google Scholar 

  48. D. Zhang, J. Li, Q. Wang and Q. Wu, J. Mater. Chem. A, 1, 8622 (2013).

    Article  CAS  Google Scholar 

  49. F. Huang, L. Chen, H. Wang, T. Feng and Z. Yan, J. Electrostat., 70, 43 (2012).

    Article  CAS  Google Scholar 

  50. C. Li, Z. Sun, R. Ma, Y. Xue and S. Zheng, Micropor. Mesopor. Mater., 243, 281 (2017).

    Article  CAS  Google Scholar 

  51. J. Tian, J. Wang, J. Dai, X. Wang and Y. Yin, Surf. Coat. Technol., 204, 723 (2009).

    Article  CAS  Google Scholar 

  52. S. N. B. S. Amran, V. Wongso, N. S. A. Halim, M. K. Husni, N. S. Sambudi and M. D. H. Wirzal, J. Asian Ceram. Soc., 7, 321 (2019).

    Article  Google Scholar 

  53. D.-G. Huang, S.-J. Liao, J.-M. Liu, Z. Dang and L. Petrik, J. Photochem. Photobiol. A, 184, 282, (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Industrial Strategic Technology Development Program (20012763, Development of petroleum residue-based porous adsorbent for industrial wastewater treatment) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Seak Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, R., Lim, C., Lee, H. et al. Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma. Korean J. Chem. Eng. 39, 3334–3342 (2022). https://doi.org/10.1007/s11814-022-1128-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1128-x

Keywords

Navigation