Skip to main content
Log in

Efficient Zr-doped FS–TiO2/SiO2 photocatalyst and its performance in acrylonitrile removal under simulated sunlight

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this research is to develop an efficient photocatalyst for the degradation of acrylonitrile under simulated sunlight. In this work, Zr-doped FS–TiO2/SiO2 photocatalyst was reported for the degradation of acrylonitrile. Sol–gel method were used for the preparation of Zr-doped FS–TiO2/SiO2 with the molar ratio of Ti:Zr varied from 1:0.07. The prepared photocatalyst was calcined at 450 °C for 2 h. The characteristics of Zr-doped FS–TiO2/SiO2 were examined by X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). XRD results confirmed the presence of anatase phase of TiO2, and it also reveals that the Zr doping did not change the crystal phase of TiO2. The absorbance of Zr-doped FS–TiO2/SiO2 was significantly enhanced, as confirmed by the red shift in UV–Vis DRS spectra. Zr doping inhibits the recombination of electron–hole pairs and enhanced the photocatalytic activity. The UV–Vis DRS spectra show stronger absorption in Zr-doped FS–TiO2/SiO2 photocatalysts compared to FS–TiO2/SiO2. XPS analysis illustrated the presence of Zr4+, Ti3+, Ti4+, O2− and OH groups in Zr-doped FS–TiO2/SiO2. Then, the photocatalytic activity of the prepared photocatalyst was tested for the photocatalytic degradation of acrylonitrile under simulated sunlight. Zr doping, together with F and S would enhance the surface area and charge separation, making it serve as a more effectual photocatalyst than TiO2 and FS–TiO2/SiO2. The degradation ratio of acrylonitrile reached 79.2% within 6 min of simulated sunlight due to the doping effect of Zr into FS–TiO2/SiO2 photocatalyst. Zr doping could enhance the thermal stability of anatase phase of TiO2 and improve its surface properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Xie, R. Li, Q. Xu, Sci. Rep. 8, 1–10 (2018)

    ADS  Google Scholar 

  2. A. Mills, S. Le Hunte, J. Photochem. Photobiol. A 108, 1–35 (1997)

    Google Scholar 

  3. W. Fu, S. Ding, Y. Wang, L. Wu, D. Zhang, Z. Pan, R. Wang, Z. Zhang, S. Qiu, Dalton Trans. 43, 16160–16163 (2014)

    Google Scholar 

  4. V. Binas, D. Venieri, D. Kotzias, G. Kiriakidis, J. Materiomics 3, 3–16 (2017)

    Google Scholar 

  5. H.H. Do, D.L.T. Nguyen, X.C. Nguyen, T.H. Le, T.P. Nguyen, Q.T. Trinh, S.H. Ahn, D.V.N. Vo, S.Y. Kim, Q. Van Le, Arab. J. Chem. 13, 3653–3671 (2020)

    Google Scholar 

  6. Y.Q. Cao, X.R. Zhao, J. Chen, W. Zhang, M. Li, L. Zhu, X.J. Zhang, D. Wu, A.D. Li, Sci. Rep. 8, 1–9 (2018)

    ADS  Google Scholar 

  7. A. Šuligoj, I. Arčon, M. Mazaj, G. Dražić, D. Arčon, P. Cool, U.L. Štangar, N.N. Tušar, J. Mater. Chem. A 6, 9882–9892 (2018)

    Google Scholar 

  8. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Sci. Rep. 6, 32355 (2016)

    ADS  Google Scholar 

  9. H. Qiao, Z. Huang, S. Liu, Y. Tao, H. Zhou, M. Li, X. Qi, J. Phys. Chem. C 123, 10949–10955 (2019)

    Google Scholar 

  10. E.B. Simsek, Appl. Catal. B 200, 309–322 (2017)

    Google Scholar 

  11. W. Li, R. Liang, N.Y. Zhou, Z. Pan, ACS Omega 5, 3808–3816 (2020)

    Google Scholar 

  12. Y.J. Jin, J. Linghu, J. Chai, C.S. Chua, L.M. Wong, Y.P. Feng, M. Yang, S. Wang, J. Phys. Chem. C 122, 16600–16606 (2018)

    Google Scholar 

  13. W. Wang, Z. Wang, J. Liu, Z. Luo, S.L. Suib, P. He, G. Ding, Z. Zhang, L. Sun, Sci. Rep. 7, 46610 (2017)

    ADS  Google Scholar 

  14. M. Du, B. Qiu, Q. Zhu, M. Xing, J. Zhang, Catal. Today 327, 340–346 (2019)

    Google Scholar 

  15. C. Li, Z. Sun, R. Ma, Y. Xue, S. Zheng, Microporous Mesoporous Mater. 243, 281–290 (2017)

    Google Scholar 

  16. X. Yu, B. Jeon, Y.K. Kim, ACS Catal. 5, 3316–3322 (2015)

    Google Scholar 

  17. H. Li, L. Qiu, B. Bharti, F. Dai, M. Zhu, F. Ouyang, L. Lin, Chemosphere 249, 126135 (2020)

    ADS  Google Scholar 

  18. S.K. Md. Saad, A. Ali Umar, M.I. Ali Umar, M. Tomitori, M.Y. Abd. Rahman, M. Mat Salleh, M. Oyama, ACS Omega 3, 2579–2587 (2018)

    Google Scholar 

  19. J. Song, X. Wang, J. Yan, J. Yu, G. Sun, B. Ding, Sci. Rep. 7, 1–12 (2017)

    ADS  Google Scholar 

  20. P. Zhang, Y. Yu, E. Wang, J. Wang, J. Yao, Y. Cao, ACS Appl. Mater. Interfaces 6, 4622–4629 (2014)

    Google Scholar 

  21. A. Charanpahari, S.S. Umare, S.P. Gokhale, V. Sudarsan, B. Sreedhar, R. Sasikala, Appl. Catal. A 443, 96–102 (2012)

    Google Scholar 

  22. X.G. Zhao, L.Q. Huang, Ceram. Int. 43, 3975–3980 (2017)

    Google Scholar 

  23. P. Singh, A. Dhir, V.K. Sangal, Desalination Water Treat 55, 1501–1508 (2015)

    Google Scholar 

  24. D.S. Hill, J.K. O’Neill, R.J. Powell, D.W. Oliver, J. Plast. Reconstr. Aesthet. Surg. 65, 911–916 (2012)

    Google Scholar 

  25. Y.H. Lai, C.W. Chiu, J.G. Chen, C.C. Wang, J.J. Lin, K.F. Lin, K.C. Ho, Sol. Energy Mater. Sol. Cells 93, 1860–1864 (2009)

    Google Scholar 

  26. N. Venkatachalam, M. Palanichamy, B. Arabindoo, V. Murugesan, J. Mol. Catal. A Chem. 266, 158–165 (2007)

    Google Scholar 

  27. K.V. Bineesh, D.K. Kim, D.W. Park, Nanoscale 2, 1222–1228 (2010)

    ADS  Google Scholar 

  28. Y. Wang, T. Brezesinski, M. Antonietti, B. Smarsly, ACS Nano 3, 1373–1378 (2009)

    Google Scholar 

  29. T.V.L. Thejaswini, D. Prabhakaran, M.A. Maheswari, J. Photochem. Photobiol. A 344, 212–222 (2017)

    Google Scholar 

  30. L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Sci. Rep. 7, 41978 (2017)

    ADS  Google Scholar 

  31. N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 92, 232112 (2008)

    ADS  Google Scholar 

  32. K. Subalakshmi, J. Senthilselvan, Sol. Energy 171, 914–928 (2018)

    ADS  Google Scholar 

  33. P. Krishnan, M. Liu, P.A. Itty, Z. Liu, V. Rheinheimer, M.H. Zhang, P.J. Monteiro, E.Y. Liya, Sci. Rep. 7, 43298 (2017)

    ADS  Google Scholar 

  34. G. Ketteler, P. Ashby, B.S. Mun, I. Ratera, H. Bluhm, B. Kasemo, M. Salmeron, J. Phys. Condens. Matter. 20, 184024 (2008)

    ADS  Google Scholar 

  35. J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Chem. Mater. 14, 3808–3816 (2002)

    Google Scholar 

  36. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A 265, 115–121 (2004)

    Google Scholar 

  37. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Eden Prairie, MN 38 (1979)

  38. Z. Bastl, A.I. Senkevich, I. Spirovova, V. Vrtilkova, Int. J. devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 34, 477–480 (2002)

  39. I. Takano, S. Isobe, T.A. Sasaki, Y. Baba, Appl. Surf. Sci. 37, 25–32 (1989)

    ADS  Google Scholar 

  40. J. Xu, M. Chen, D. Fu, Appl. Surf. Sci. 257, 7381–7386 (2011)

    ADS  Google Scholar 

  41. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Google Scholar 

  42. Y. Zhang, H. Xu, Y. Xu, H. Zhang, Y. Wang, J. Photochem. Photobiol. A 170, 279–285 (2005)

    Google Scholar 

  43. D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi, H. Haneda, J. Solid State Chem. 178, 3293–3302 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Foundation Science and Technology Innovation Committee of Shenzhen, P.R. China (no. JCYJ20150731104949798, no. ZDSYS201603301417588) and China Postdoctoral Science Foundation (FD29100012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxiong Zha or Feng Ouyang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, B., Li, H., Liu, D. et al. Efficient Zr-doped FS–TiO2/SiO2 photocatalyst and its performance in acrylonitrile removal under simulated sunlight. Appl. Phys. A 126, 887 (2020). https://doi.org/10.1007/s00339-020-04066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04066-4

Keywords

Navigation