Skip to main content
Log in

Deep dechlorination of hydrocarbon oil by reactive adsorption on TiO2-based metal oxides

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study reports reactive adsorptive dechlorination of hydrocarbon oil over TiO2-based metal oxides at the temperatures of 20–150 °C. TiO2 and a series of TiO2-CeO2 were prepared by precipitation method and characterized by N2 adsorption, XRD, FT-IR, pyridine-IR, NH3-TPD and CO2-TPD. The characterization results showed that both the acidity and basicity of the adsorbent had a significant impact on its dechlorination capacity. TiO2-U precipitated by urea exhibited higher dechlorination capacity than TiO2-A precipitated by ammonia due to the higher surface area, more acid and base amounts of the former. Among various Ti(1−x)CexO2 (x=0.1, 0.3, 0.5, 0.7, 0.9, 1) oxides, Ti0.7Ce0.3O2 and Ti0.3Ce0.7O2 bimetallic oxides showed higher dechlorination capacity than TiO2-U, and the chlorine removal over Ti0.7Ce0.3O2 reached 82.8% after adsorption at 150 °C for 3 h. Mixing 5 wt% of alkali earth metal oxide into Ti0.7Ce0.3O2 mechanically enhanced its dechlorination capacity, and the chlorine removal over Ti0.7Ce0.3O2-BaO reached as high as 92.1%. The chlorine removal increased with increasing the adsorption temperature. Ion chromatography and GC-MS analysis revealed that organochlorine compound was converted into Cl and its corresponding alcohol over the adsorbent at 150 °C. Finally, the mechanism of reactive adsorption dechlorination was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Niu, D. Zhao, G. Xie, Y. Yuan, W. Zhang, C. Zhang, C. Li and L. Cui, Fuel, 304, 121410 (2021).

    Article  CAS  Google Scholar 

  2. X. L. Ge, L. Shi and X. Wang, Ind. Eng. Chem. Res., 53, 6351 (2014).

    Article  CAS  Google Scholar 

  3. G. Z. Jiang, D. A. S. Monsalve, P. Clough, Y. Jiang and G. A. Leeke, Acs Sustain. Chem. Eng., 9, 1576 (2021).

    Article  CAS  Google Scholar 

  4. B. Wu, Y. Li, X. Li and J. Zhu, Energy Fuels, 29, 1391 (2015).

    Article  CAS  Google Scholar 

  5. L. Xu, E. E. Stangland, J. A. Dumesic and M. Mavrikakis, Acs Catal., 11, 7890 (2021).

    Article  CAS  Google Scholar 

  6. P. Zhao, N. Huang, J. Li and X. Cui, Fuel Process. Technol., 199, 106277 (2020).

    Article  CAS  Google Scholar 

  7. V. K. Soni, G. Singh, B. K. Vijayan, A. Chopra, G. S. Kapur and S. S. V. Ramakumar, Energy Fuels, 35, 12763 (2021).

    Article  CAS  Google Scholar 

  8. R. Palos, A. Gutiérrez, F. J. Vela, M. Olazar, J. M. Arandes and J. Bilbao, Energy Fuels, 35, 3529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. R. Ball, K. R. Rivera-Dones, E. Stangland, M. Mavrikakis and J. A. Dumesic, J. Catal., 370, 241 (2019).

    Article  CAS  Google Scholar 

  10. J. Sun, Y. Han, H. Fu, H. Wan, Z. Xu and S. Zheng, Appl. Surf. Sci., 428, 703 (2018).

    Article  CAS  Google Scholar 

  11. A. Khaleel, Micropor. Mesopor. Mater., 91, 53 (2006).

    Article  CAS  Google Scholar 

  12. N. Lingaiah, M. A. Uddin, A. Muto, Y. Sakata and K. Murata, Appl. Catal. A Gen., 207, 79 (2001).

    Article  CAS  Google Scholar 

  13. N. Zhang, R. Li, G. Zhang, L. Dong and T. J. A. O. Li, Acs Omega, 5, 11987 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Chen, X. Zhao and Z. Ying, China Pet. Process Pe., 19, 23 (2017).

    Google Scholar 

  15. Y. Mu, G. Zhan, C. Huang, X. Wang, Z. Ai, J. Zou, S. Luo and L. Zhang, Environ. Sci. Technol., 53, 3208 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. V. Najafi, E. Ahmadi and F. Ziaee, Iran. Polym. J., 27, 841 (2018).

    Article  CAS  Google Scholar 

  17. S. R. Lee, J. M. Cho, M. Son, M. J. Park, W. Y. Kim, S. Y. Kim and J. W. Bae, Chem. Eng. J., 331, 56 (2018).

    Google Scholar 

  18. X. Ge, L. Shi and X. Wang, Ind. Eng. Chem. Res., 53, 6351 (2014).

    Article  CAS  Google Scholar 

  19. M. Uddin, A. Muto, T. Imai and Y. Sakata, Fuel, 80, 1901 (2001).

    Article  Google Scholar 

  20. G. Jiang, D. Monsalve, P. Clough, Y. Jiang and G. A. Leeke, ACS Sustain. Chem. Eng., 9, 1576 (2021).

    Article  CAS  Google Scholar 

  21. A. Lopez-Urionabarrenechea, I. de Marco, B.M. Caballero, M.F. Laresgoiti and A. Adrados, Fuel Process. Technol., 137, 229 (2015).

    Article  CAS  Google Scholar 

  22. W. Zhu, Y. Xu, H. Li, B. Dai, H. Xu, C. Wang, Y. Chao and H. Liu, Korean J. Chem. Eng., 31, 211 (2014).

    Article  CAS  Google Scholar 

  23. S. S. Chen, H. C. Hsi, S. H. Nian and C. H. Chiu, Appl. Catal. B, 160, 558 (2014).

    Article  CAS  Google Scholar 

  24. J. Guo, S. Watanabe, M. J. Janik, X. Ma and C. Song, Catal. Today, 149, 218 (2010).

    Article  CAS  Google Scholar 

  25. W. Zhang, X. Li, H. Wang, Y. Song, S. Zhang and C. Li, Korean J. Chem. Eng., 34, 3132 (2017).

    Article  CAS  Google Scholar 

  26. J. Xiao, S. Sitamraju, Y. Chen, S. Watanabe, M. Fujii, M. Janik and C. Song, AIChE J., 61, 631 (2015).

    Article  CAS  Google Scholar 

  27. X. C. Xiao, B. G. Peng, L. F. Cai, X. M. Zhang, S. R. Liu and Y. D. Wang, Sci. Rep., 8, 7571 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Y. J. Wang, J. M. Ma, M. F. Luo, P. Fang and M. He, J. Rare Earth, 25, 58 (2007).

    CAS  Google Scholar 

  29. W. Zhang, X. Li, H. Wang, Y. J. Song, S. H. Zhang and C. Q. Li, Korean J. Chem. Eng., 34, 3132 (2017).

    Article  CAS  Google Scholar 

  30. X. Wang, C. Chen, Y. Chang and H. Liu, J. Hazard. Mater., 161, 815 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. H. Zhen, X. Qian, Y. Hu and J. Cheng, Chem. Eng. J., 209, 547 (2012).

    Article  CAS  Google Scholar 

  32. S. Watanabe, J. Phy. Chem. C, 113, 14249 (2009).

    Article  CAS  Google Scholar 

  33. M. Dahl, Y. Liu and Y. Yin, Chem. Rev., 114, 9853 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. A. Adamczyk and E. Dhigon, Spectrochim. Acta A Mol. Biomol. Spectrosc., 89, 11 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. M. D. Hernández-Alonso, I. Tejedor-Tejedor, J. M. Coronado, M. A. Anderson and J. Soria, Catal. Today, 143, 364 (2009).

    Article  CAS  Google Scholar 

  36. M. Xie, L. Jing, Z. Jia, J. Lin and H. Fu, J. Hazard. Mater., 176, 139 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. P. Parthasarathy and S. Vivekanandan, Ain Shams Eng. J., 11, 777 (2020).

    Article  Google Scholar 

  38. Z. Sun, F. Takahashi, O. Yu, K. Fukushi, Y. Oshima and K. Yamamoto, Chemosphere, 66, 151 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. J. Lu, S. Ma, J. Gao, J. Freitas and T. J. Bonagamba, J. Appl. Polym. Sci., 90, 3252 (2010).

    Article  CAS  Google Scholar 

  40. J. Lu, S. Ma and J. Gao, Energy Fuels, 16, 1251 (2002).

    Article  CAS  Google Scholar 

  41. H. Song, H. Gao, H. Song, G. Yang and X. Li, Ind. Eng. Chem. Res., 55, 3813 (2016).

    Article  CAS  Google Scholar 

  42. C. Lee, Y. Jin, J. Kim, S. H. Park, B. H. Chun and S. H. Kim, J. Ind. Eng. Chem., 19, 1443 (2013).

    Article  CAS  Google Scholar 

  43. Y. Zhou, X. Y. Li, S. L. Hou and J. X. Xu, J. Mol. Catal. A: Chem., 365, 203 (2012).

    Article  CAS  Google Scholar 

  44. S. Li, G. Liu, S. Zhang, K. An and Z. Ma, J. Energy Chem., 43, 167 (2020).

    Google Scholar 

  45. N. Lingaiah, M. A. Uddin, K. Morikawa, A. Muto, Y. Sakata and K. Murata, Green Chem., 3, 74 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21905027), Beijing Education Committee Science and Technology Project (KM202010017007), and the Innovation and Entrepreneurship Training Program for College Students (No. 2021J00084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Chen Zhang.

Additional information

Notes

The authors declare that there are no known competing financial interests or personal relationships that could influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, H., Feng, Y., Ding, J. et al. Deep dechlorination of hydrocarbon oil by reactive adsorption on TiO2-based metal oxides. Korean J. Chem. Eng. 39, 1936–1945 (2022). https://doi.org/10.1007/s11814-022-1114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1114-3

Keywords

Navigation