Skip to main content
Log in

Effect of the physicochemical properties of SiO2 on performance of supported metallocene catalyst

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of the calcination temperature of SiO2 on ethylene polymerization behavior was studied with supported metallocene catalysts. The concentration of hydroxyl group on the SiO2 surface was measured through FT-IR, thermogravimetry, and trimethylaluminium titration method. In addition, physical properties such as particle morphology, surface area, and pore characteristics were analyzed through BET, and SEM. (n-BuMeCp)2ZrCl2 was supported on the SiO2, which was calcined at different temperatures in the range of 100 and 900 °C. The resulting supported catalyst was applied to ethylene homopolymerization and ethylene-1-hexene copolymerization at 80 °C and 20 bar, showing that the lower calcination temperature resulted in higher activity due to the larger Zr and Al loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kaminsky and A. Laban, Appl. Catal. A Gen., 222(1–2), 47 (2001).

    Article  CAS  Google Scholar 

  2. W. Kaminsky, J. Chem. Soc. - Dalt. Trans., 9, 1413 (1998).

    Article  Google Scholar 

  3. W. Kaminsky and M. Arndt, Adv. Polym. Sci., 127, 143 (1997).

    Article  CAS  Google Scholar 

  4. B. Heurtefeu, C. Bouilhac, É. Cloutet, D. Taton, A. Deffieux and H. Cramail, Prog. Polym. Sci., 36(1), 89 (2011).

    Article  CAS  Google Scholar 

  5. G. Fink, B. Steinmetz, J. Zechlin, C. Przybyla and B. Tesche, Chem. Rev., 100(4), 1377 (2000).

    Article  CAS  Google Scholar 

  6. M. A. Bashir, V. Monteil, C. Boisson and T. F. L. McKenna, React. Chem. Eng., 2(4), 521 (2017).

    Article  CAS  Google Scholar 

  7. E. M. Carnahan and G. B. Jacobsen, Cattech, 4(1), 74 (2000).

    Article  CAS  Google Scholar 

  8. H. G. Alt, Dalt. Trans., 20, 3271 (2005).

    Article  Google Scholar 

  9. E. Zurek and T. Ziegler, Prog. Polym. Sci., 29(2), 107 (2004).

    Article  CAS  Google Scholar 

  10. T. Tayano, H. Uchino, T. Sagae, K. Yokomizo, K. Nakayama, S. Ohta, H. Nakano and M. Murata, Macromol. React. Eng., 11(2), 1 (2017).

    Article  Google Scholar 

  11. M. Stürzel, Y. Thomann, M. Enders and R. Mülhaupt, Macromolecules, 47(15), 4979 (2014).

    Article  Google Scholar 

  12. J. H. Yim, J. S. Lee and Y. S. Ko, Polymer, 39(1), 169 (2015).

    CAS  Google Scholar 

  13. J. S. Lee J. H. Yim, J. K. Jeon and Y. S. Ko, Catal. Today, 185(1), 175 (2012).

    Article  CAS  Google Scholar 

  14. A. C. Cariño, S. J. Park and Y. S. Ko, Appl. Chem. Eng., 29(4), 461 (2018).

    Google Scholar 

  15. S. Y. Lee and Y. S. Ko, J. Nanosci. Nanotechnol., 13(6), 4401 (2013).

    Article  CAS  Google Scholar 

  16. J. S. Lee and Y. S. Ko, J. Mol. Catal. A Chem., 386, 120 (2014).

    Article  CAS  Google Scholar 

  17. J. D. Encarnacion, S. J. Park and Y. S. Ko, Korean J. Chem. Eng., 37(2), 380 (2020).

    Article  CAS  Google Scholar 

  18. J. Celedonio, J. S. Lee and Y. S. Ko, Appl. Chem. Eng., 25(4), 396 (2014).

    Article  CAS  Google Scholar 

  19. Y. S. Ko, J. S. Lee J. H. Yim, J. K. Jeon and K. Y. Jung, J. Nanosci. Nanotechnol., 10(1), 180 (2010).

    Article  CAS  Google Scholar 

  20. X. Zheng, M. Smit, J. C. Chadwick and J. Loos, Macromolecules, 38(11), 4673 (2005).

    Article  CAS  Google Scholar 

  21. S. Ek, A. Root, M. Peussa and L. Niinistö, Thermochim. Acta, 379(1–2), 201 (2001).

    Article  CAS  Google Scholar 

  22. A. R. Albunia, F. Parades and D. Jeremic, Multimodal polymers with supported catalysts, Springer, New York (2019).

    Book  Google Scholar 

  23. R. Van Grieken, G. Calleja, D. Serrano, C. Martos, A. Melgares and I. Suarez, Polym. React. Eng., 11(1), 17 (2003).

    Article  CAS  Google Scholar 

  24. M. Atiqullah, M. N. Akhtar, A. A. Moman, A. H. Abu-Raqabah, S. J. Palackal, H. A. Al-Muallem and O. M. Hamed, Appl. Catal. A Gen., 320, 134 (2007).

    Article  CAS  Google Scholar 

  25. M. A. Bashir, T. Vancompernolle, R. Gauvin, L. Delevoye, N. Merle, V. Monteil, M. Taoufik, T. F. L. McKenna and C. Boisson, Catal. Sci. Technol., 6(9), 2962 (2016).

    Article  CAS  Google Scholar 

  26. R. Mueller, H. K. Kammler, K. Wegner and S. E. Pratsinis, Langmuir., 19(1), 160 (2003).

    Article  CAS  Google Scholar 

  27. J. P. Gallas, J. M. Goupil, A. Vimont, J. C. Lavalley, B. Gil, J. P. Gilson and O. Miserque, Langmuir, 25(10), 5825 (2009).

    Article  CAS  Google Scholar 

  28. C. G. Armistead, A. J. Tyler, F. H. Hambleton, S. A. Mitchell and J. A. Hockey, J. Phys. Chem., 73(11), 3947 (1969).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2016R1D1A1B01009941) and by the research grant of the Kongju National University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H.J., Ko, Y.S. Effect of the physicochemical properties of SiO2 on performance of supported metallocene catalyst. Korean J. Chem. Eng. 39, 1762–1767 (2022). https://doi.org/10.1007/s11814-022-1097-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1097-0

Keywords

Navigation