Skip to main content
Log in

Synthesis and evaluation of a new three-metallic high-performance Ziegler–Natta catalyst for ethylene polymerization: experimental and computational studies

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A three-metallic high-performance heterogeneous Ziegler–Natta-type catalyst for polymerization of ethylene was synthesized using titanium tetrachloride as the active center, magnesium ethoxide as the support, and ethylaluminum sesquichloride (EASC) as a chlorinating agent. The prepared catalyst was characterized by FTIR, XRD, TGA, and BET methods. FTIR and XRD patterns evidenced that Mg(OEt)2 was fully converted to MgCl2 during catalyst synthesis. The specific surface area (SSA) of the synthesized catalyst was calculated to be 44.83 m2/g. Morphological studies by the SEM technique demonstrated that the obtained catalyst had the particles with a disordered pattern. Elemental analysis of the catalyst, performed by X-ray fluorescence (XRF), titration, and UV–Vis spectroscopy techniques, confirmed a large amount of titanium on the support’s bed. Polymerization of ethylene was conducted by employing synthesized catalyst using triethylaluminum as cocatalyst. In the polymerization reaction, the synthesized tri-metallic catalyst exhibited high activity of 9.50 kg PE.g Cat−1. h−1. In the last part, to explore the possible interaction of EASC with catalytic reagents, density functional theory (DFT) simulation was conducted.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marques M, Almeida L, Cruz K (2010) Influence of the preparation technique of MgCl2/TiCl4 Ziegler-Natta catalyst on the performance in ethylene and propylene polymerization. ChChT 4(4):291–296

    Google Scholar 

  2. Pokasermsong P, Praserthdam PJEJ (2009) Comparison of activity of Ziegler-Natta catalysts prepared by recrystallization and chemical reaction methods towards polymerization of ethylene. Eng J 13(1):57–64

    Google Scholar 

  3. Galiè F (2016) Global market trends and investments in polyethylene and polypropylene. https://www.icis.com/explore/resources/global-market-trends-and-investments-in-polyethylene-and-polypropylene/

  4. Zhou W, Zhong L, Li WD (2014) Progress in development of catalyst systems for coordinated polymerization of olefins. Adv Mater Res 900:11–14

    Google Scholar 

  5. Bahri-Laleh N, Hanifpour A, Mirmohammadi SA, Poater A, Nekoomanesh-Haghighi M, Talarico G et al (2018) Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Prog Polym Sci 84:89–114

    CAS  Google Scholar 

  6. Zhao Z, Mikenas T, Zakharov VA, Nikolaeva M, Matsko M, Bessudnova E et al (2019) Copolymerization of ethylene with α-olefins over highly active supported Ziegler-Natta catalyst with vanadium active component. Polyolefins J 6(2):117–126

    CAS  Google Scholar 

  7. Wang D, Zhao Z, Mikenas T, Lang X, Echevskaya L, Zhao C et al (2012) A new high-performance Ziegler-Natta catalyst with vanadium active component supported on highly-dispersed MgCl 2 for producing polyethylene with broad/bimodal molecular weight distribution. Polym Chem 3(9):2377–2382

    CAS  Google Scholar 

  8. Zakharov V, Echevskaya L, Mikenas T, Matsko M, Tregubov A, Vanina M et al (2008) Supported Ziegler-Natta catalysts for ethylene slurry polymerization and control of molecular weight distribution of polyethylene. Chin J Polym Sci 26(05):553–559

    CAS  Google Scholar 

  9. Thongdonjui A, Trakarnpruk W, Strauss RH (2009) Effect of electron donor on PE polymerization. J Metals Mater Miner 19(1)

  10. Rahbar A, Nekoomanesh-Haghighi M, Bahri-Lalēh N, Abedini H (2015) Effect of water on the supported Ziegler–Natta catalysts: optimization of the operating conditions by response surface methodology. Catal Lett 145(5):1186–1195

    CAS  Google Scholar 

  11. Hadian N, Hakim S, Nekoomanesh-Haghighi M, Bahri-Laleh N (2014) Storage time effect on dynamic structure of MgCl2.nEtOH adducts in heterogeneous Ziegler-Natta catalysts. Polyolefins J 1(1):33–41

    Google Scholar 

  12. Pokasermsong P, Praserthdam P (2009) Comparison of activity of Ziegler-Natta catalysts prepared by recrystallization and chemical reaction methods towards polymerization of ethylene. Eng J 13(1):57–64

    Google Scholar 

  13. Ahmadjo S, Jamjah R, Zohuri GH, Damavandi S, Nekoomanesh Haghighi M, Javaheri M (2007) Preparation of highly active heterogeneous Ziegler-Natta catalyst for polymerization of ethylene. Iran Polym J 16(1):31

    CAS  Google Scholar 

  14. Hiraoka Y, Dashti A, Kim SY, Taniike T, Terano M (2009) Spatial distribution of active Ti species on morphology controlled Mg (OEt) 2-based Ziegler-Natta catalyst. Curr Trends Polym Sci 13

  15. Funako T, Chammingkwan P, Taniike T, Terano M (2015) Alternation of pore architecture of Ziegler-Natta catalysts through modification of magnesium ethoxide. Macromol React Eng 9(4):325–332

    CAS  Google Scholar 

  16. Tanase S, Katayama K, Inasawa S, Okada F, Yamaguchi Y, Konakazawa T et al (2008) Particle growth of magnesium alkoxide as a carrier material for polypropylene polymerization catalyst. Appl Catal A 350(2):197–206

    CAS  Google Scholar 

  17. Tanase S, Katayama K, Inasawa S, Okada F, Yamaguchi Y, Sadashima T et al (2008) New synthesis method using magnesium alkoxides as carrier materials for Ziegler-Natta catalysts with spherical morphology. Macromol React Eng 2(3):233–239

    CAS  Google Scholar 

  18. Taniike T, Funako T, Terano M (2014) Multilateral characterization for industrial Ziegler-Natta catalysts toward elucidation of structure–performance relationship. J Catal 311:33–40

    CAS  Google Scholar 

  19. Funako T, Chammingkwan P, Taniike T, Terano M (2015) Addition of a second alcohol in magnesium ethoxide synthesis as a way to vary the pore architecture of Ziegler-Natta catalysts. Polyolefins J 2(2):65–71

    Google Scholar 

  20. Dashti A, Ramazani S, Hiraoka Y, Kim SY, Taniike T, Terano M (2009) Kinetic and morphological investigation on the magnesium ethoxide-based ziegler-natta catalyst for propylene polymerization using typical external donors. Macromol Symp. https://doi.org/10.1002/masy.200951107

    Article  Google Scholar 

  21. Xiaoheng Z, Zifang G, Wei C, Bingquan M (2011) Ethylene polymerization using improved polyethylene catalyst. Chin J Chem Eng 19(1):52–56

    Google Scholar 

  22. Wolf CR, de Camargo Forte MM, dos Santos JHZ (2005) Characterization of the nature of chemical species of heterogeneous Ziegler-Natta catalysts for the production of HDPE. Catal Today 107:451–457

    Google Scholar 

  23. Yang H, Zhang L, Zang D, Fu Z, Fan Z (2015) Effects of alkylaluminum as cocatalyst on the active center distribution of 1-hexene polymerization with MgCl 2-supported Ziegler-Natta catalysts. Catal Commun 62:104–106

    CAS  Google Scholar 

  24. Hu J, Han B, Shen X-r, Fu Z-s, Fan Z-q (2013) Probing the roles of diethylaluminum chloride in propylene polymerization with MgCl2-supported Ziegler-Natta catalysts. Chin J Polym Sci 31(4):583–90

    CAS  Google Scholar 

  25. Nitta T, Liu B, Nakatani H, Terano M (2002) Formation, deactivation and transformation of stereospecific active sites on TiCl 4/dibutylphthalate/Mg (OEt) 2 catalyst induced by short time reaction with Al-alkyl cocatalyst. J Mol Catal A Chem 180(1):25–34

    CAS  Google Scholar 

  26. Dwivedi S, Taniike T, Terano M (2014) Understanding the chemical and physical transformations of a Ziegler-Natta Catalyst at the initial stage of polymerization kinetics: the key role of alkylaluminum in the catalyst activation process. Macromol Chem Phys 215(18):1698–1706

    CAS  Google Scholar 

  27. Hongmanee G, Sripothongnak S, Jongsomjit B, Praserthdam P (2014) Observation on different reducing power of cocatalysts on the Ziegler-Natta catalyst containing alkoxide species for ethylene polymerization. J Appl Polym Sci. https://doi.org/10.1002/app.40884

    Article  Google Scholar 

  28. Trischler H, Höchfurtner T, Ruff M, Paulik C (2013) Influence of the aluminum alkyl co-catalyst type in Ziegler-Natta ethene polymerization on the formation of active sites, polymerization rate, and molecular weight. Kinet Catal 54(5):559–565

    CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB (2009) Gaussian 09. Gaussian, Inc., Wallingford, CT

  30. Ernzerhof M, Perdew JP (1998) Generalized gradient approximation to the angle- and system-averaged exchange hole. J Chem Phys 109:3313

    CAS  Google Scholar 

  31. Correa A, Bahri-Laleh N, Cavallo L (2013) How well can DFT reproduce key interactions in Ziegler-Natta systems? Macromol Chem Phys 214(17):1980–1989

    CAS  Google Scholar 

  32. Bahri-Laleh N, Poater A, Cavallo L, Mirmohammadi SA (2014) Exploring the mechanism of Grignard metathesis polymerization of 3-alkylthiophenes. Dalton Trans 43(40):15143–15150

    CAS  PubMed  Google Scholar 

  33. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–7

    Google Scholar 

  34. Bahri-Laleh N (2016) Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl Surf Sci 379:395–401

    CAS  Google Scholar 

  35. Dongare M, Sinha A (1982) Thermal analysis of some metal alkoxides. Thermochim Acta 57(1):37–45

    CAS  Google Scholar 

  36. Dana M, Zohuri GH, Asadi S (2019) Improvement in volume resistivity and morphology of a blend of polyolefin elastomer with linear low-density polyethylene. Iran Polym J 28(7):587–595

    CAS  Google Scholar 

  37. Kheradmand A, Abadi ARS, Khorasheh F, Baghalha M, Bahrami H (2016) Preparation and study of bi-supported Ziegler-Natta catalyst with nano graphene oxide and magnesium ethoxide supports for polymerization of polyethylene. Polym Sci Ser B 58(3):271–277

    CAS  Google Scholar 

  38. Di Noto V, Bresadola S (1996) New synthesis of a highly active δ-MgCl2 for MgCl2/TiCl4/AlEt3 catalytic systems. Macromol Chem Phys 197(11):3827–3835

    Google Scholar 

  39. Lee D-W, Lee H-M, Wang JP (2011) Chemical synthesis of aluminum chloride (AlCl3) by cost-effective reduction process. Rev Adv Mater Sci 28:40–43

    CAS  Google Scholar 

  40. Shijing X, Honglan L, Minghui Z (1990) Studies on TiCI4/Mg (OEt) 2/EB Supported catalysts for Propylene Polymerization. Chin J Polym Sci 8(3):253–260

    Google Scholar 

  41. Sinthusai L, Trakarnpruk W, Strauss R (2009) Ziegler-Natta catalyst with high activity and good hydrogen response. J Metals Mater Miner 19(2)

  42. Abedi S, Majdabadi-Farahani N, Daftari-Besheli M, Ghasempour H, Azadi FJPB (2015) Promoting ethylene polymerization through cocatalyst modification. Polym Bull 72(9):2377–2388

    CAS  Google Scholar 

  43. Kashiwa N (1980) Super active catalyst for olefin polymerization. Polym J 12(9):603–608

    CAS  Google Scholar 

  44. Bahri-Laleh N, Arabi H, Mehdipor-Ataei S, Nekoomanesh-Haghighi M, Zohuri G, Seifali M et al (2012) Activation of Ziegler-Natta catalysts by organohalide promoters: a combined experimental and density functional theory study. J App Polym Sci 123(4):2526–2533

    CAS  Google Scholar 

  45. Bahri-Laleh N, Seifali Abbas-Abadi M, Nekoomanesh-Haghighi M, Akbari Z, Tavasoli MR, Mirjahanmardi SH (2010) Effect of halocarbon promoters on polyethylene properties using MgCl2 (ethoxide type)/TiCl4/AlEt3/H2 catalyst system. J Appl Polym Sci 117(3):1780–6

    CAS  Google Scholar 

  46. Sarma KR, Padmanabhan S, Patel V (2010) Estimation of the components in titanation mixture used in the synthesis of polyolefin catalysts. Anal Methods 2(7):912–915

    CAS  Google Scholar 

  47. Bazvand R, Bahri-Laleh N, Nekoomanesh-Haghighi M, Abedini H (2015) Highly efficient FeCl3 doped Mg(OEt)2/TiCl4-based Ziegler-Natta catalysts for ethylene polymerization. Des Monomers Polym 18(7):599–610

    CAS  Google Scholar 

  48. Nouri-Ahangarani F, Bahri-Laleh N, Nekomanesh Haghighi M, Karbalaei M (2016) Synthesis of highly isotactic poly 1-hexene using Fe-doped Mg(OEt)2/TiCl4/ED Ziegler-Natta catalytic system. Des Monomers Polym 19(5):394–405

    CAS  Google Scholar 

  49. Cossee P (1967) The mechanism of Ziegler-Natta polymerization. II. Quantum-chemical and crystal-chemical aspects, chap 3. In: Ketley AD (ed) The stereochemistry of macromolecules, vol 6. Marcel Dekker, New York

  50. Xiao A, Wang L, Liu Q, Yu H, Dong X (2008) Synthesis of low isotactic polypropylene using MgCl2/AlCl3-supported Ziegler-Natta catalysts prepared using the one-pot milling method. Des Monomers Polym 11(2):139–145

    CAS  Google Scholar 

  51. Bahri-Laleh N, Correa A, Mehdipour-Ataei S, Arabi H, Nekoomanesh-Haghighi M, Zohuri GH et al (2011) Moving up and down the Ti-oxidation state in Ziegler Natta catalysis. Macromolecules 44(4):778–83

    CAS  Google Scholar 

  52. Correa A, Credendino R, Pater JTM, Morini G, Cavallo L (2012) Theoretical investigation of active sites at the corners of MgCl2 crystallites in supported Ziegler-Natta catalysts. Macromolecules 45(9):3695–3701

    CAS  Google Scholar 

  53. Correa A, Piemontesi F, Morini G, Cavallo L (2007) Key elements in the structure and function relationship of the MgCl2/TiCl4/lewis base Ziegler-Natta catalytic system. Macromolecules 40(25):9181–9189

    CAS  Google Scholar 

  54. Busico V, Corradini P, De Martino L, Proto A, Savino V, Albizzati E (1985) Polymerization of propene in the presence of MgCl2‐supported Ziegler‐Natta catalysts, 1. The role of ethyl benzoate as “internal” and “external” base. Die Makromol Chem Macromol Chem Phys 186(6):1279–1288

    CAS  Google Scholar 

Download references

Acknowledgements

Naeimeh Bahri-Laleh thanks the MOLNAC (www.molnac.unisa.it) for its computer facilities and Iran Polymer and Petrochemical Institute for the financial support of computational section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghayeh Jamjah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abazari, M., Jamjah, R., Bahri-Laleh, N. et al. Synthesis and evaluation of a new three-metallic high-performance Ziegler–Natta catalyst for ethylene polymerization: experimental and computational studies. Polym. Bull. 79, 7265–7280 (2022). https://doi.org/10.1007/s00289-021-03848-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03848-x

Keywords

Navigation